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Hume on spatial extension (and alpha) in 1739: 
 

The table before me is alone sufficient by its view to give me the idea of ex-
tension. This idea, then, is borrow’d from, and represents some impres-
sion, which this moment appears to the senses. But my senses convey to 
me only the impressions of colour’d points, dispos’d in a certain manner. 
If the eye is sensible of any thing farther, I desire it may be pointed out to 
me. But if it be impossible to shew any thing farther, we may conclude 
with certainty, that the idea of extension is nothing but a copy of these co-
lour’d points, and of the manner of their appearance. 

Suppose that in the extended object, or composition of colour’d 
points, from which we first receiv’d the idea of extension, the points were 
of a purple colour; it follows, that in every repetition of that idea we wou’d 
not only place the points in the same order with respect to each other, but 
also bestow on them that precise colour, with which alone we are ac-
quainted. But afterwards having experience of the other colours of violet, 
green, red, white, black, and of all the different compositions of these, and 
finding a resemblance in the disposition of colour’d points, of which they 
are compos’d, we omit the peculiarities of colour, as far as possible, and 
found an abstract idea merely on that disposition of points, or manner of 
appearance, in which they agree. 

 
David Hume 
A Treatise of Human Nature 
Book I, Part II, Section III 
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INTRODUCTION 
 
I gather here ideas scattered over a dozen or so technical memos written 
over many years at several institutions into a single general theory of image 
computing, which I believe deserves wider appreciation. The theory 
springs from two fundamental notions, the first seemingly obvious, the 
second not so much: (1) sample-based computer picturing differs com-
pletely from geometry-based picturing—or, what is essentially the same, the 
discrete realm is disjoint from the continuous; and (2) the concept of 
premultiplied alpha frees the imaging world—the sample-based realm—
from rectilinearity. In fact, the word “sprite” means, more-or-less, “shaped 
image” or “non-rectilinear image.” 

Strong consequences of the theory are: (1) overthrow of the tyranny 
of the rectangle in imaging via the notion of sprites; (2) a careful separa-
tion of the discrete domain from the continuous, disallowing for exam-
ple rectilinear arrays thought of as rectangles, descriptions of pixels as 
little squares or voxels as little cubes, real coordinate systems for images, 
and a host of similar confusions that have plagued image computing for 
decades;1 (3) a sampling-theoretical, rigorous method for going back and 
forth between the two domains, banishing the box reconstruction filter 
or at least trumpeting its general inadequacy; (4) separation of creative 
space from display space for images, a simple but profound idea bor-
rowed directly from the continuous world into the discrete world; and 
(5) a pathway for integration of the discrete with the continuous worlds—
completely separated at present, with distinct applications based on dis-
tinct interfaces—with at least a common user interaction being a conse-
quence. 

Most images are now digital, so there is no longer any reason that an 
image be assumed rectilinear, despite the fact that the world’s most wide-

                                                                 
1 For example, I avoid ever using the word “rectangular” (a geometric term) when talking about 
“rectilinear” (a sampling term) arrays—i.e., those arranged in discrete rows and columns. Here is 
another: geometric objects are “clipped,” but sprites are “cropped.” There will be many other in-
stances of almost maniacal avoidance of continuous terms in discrete contexts to avoid the many 
confusions which currently exist between the realms. 
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ly used image editing application does exactly that. The mechanism for 
breaking the rectangle’s stranglehold is the sprite, or shaped image—a 
phrasing I hope you soon find redundant—its shape being defined by its 
alpha channel, which specifies those points occupied by the sprite. The 
alpha channel is intrinsic to the sprite in a manner to be described, not 
just extra information. The other channels contain (at least) the sprite’s 
color—often a red channel, a green channel, and a blue channel in a typ-
ical configuration. Since the alpha channel remains defined despite what 
colors might be substituted into these other channels, it realizes the ex-
tension, Hume’s term, of the object or objects represented by the sprite. 
In this rephrasing of the problem, the old-fashioned rectilinear image is 
just a special case of the sprite, being defined on a rectilinear array of 
sample points with alpha equal one (that is, opaque) at each sample. 

Although much of what I have to say is couched in terms of 2-
dimensional images, it shall be obvious that all the notions expressed 
readily generalize to 3-dimensional images—so-called volumetric imag-
ing—and to temporal sequences of 2-dimensional images such as movies 
or videos,2 even to temporal sequences of 3-dimensional images,3 and so 
forth. Overthrowing the tyranny of the rectangle in 2-dimensional imag-
ing generalizes to overthrowing the tyranny of cube (or rectangular 
prism) in shaped volumes and sampled flows. 

Digital images, and hence sprites, are famously constituted of pixels—
in the 2-dimensional case anyway. In the 3-dimensional generalization to 
volumetric imaging the pixel is often called a voxel. A common misper-
ception—that a pixel is a little square, or that a voxel is a little cube—is so 
pernicious that I devoted a paper to the topic many years ago. Despite its 
signs of age—examples using old-fashioned analog video, for example—I 
attach the paper as appendix A essentially unchanged, as I don’t think I 
could word it better now. The important point is: In all cases of digital 
imaging, and in all dimensions, the constitutive element—whether it be 
called a pixel, or voxel, or whatever—is a sample, and classic sampling 
theory is the underlying mathematics. There is no geometry. 

                                                                 
2 Often termed (2+1)-dimensional objects. 
3 (3+1)-dimensional objects. 



SPRITE THEORY 

©2009–2010 Alvy Ray Smith viii Working Draft 1/7/2010 

Classic plane and solid geometry underlies the other major branch of 
computer-mediated picturing, that of geometry-based applications in 
which the triangle, square, circle, polygons, splines, cylinders, ellipsoids, 
patches, etc., are the constitutents. There are no pixels in this world, on-
ly geometry. It is the display of the abstract geometry that invokes sam-
pling and pixels, but display is a process separate from the creation of the 
abstract geometry-based picture to be displayed—a point I shall return to 
repeatedly. Geometry-based applications assume a continuous model of 
the universe. Sampling-based applications assume a discrete model. 

The sprite theory is opposed to the “monolithic” theory, currently the 
most widely used theory of image computing. The monolithic theory is 
characterized by the resulting image always being rectilinear—that is, re-
stricted to the bounding shape of a rectangle and opaque everywhere. 
The popularity of this restricted model reflects the dominance of Adobe 
PHOTOSHOP which employs it. In fact, I will sometimes refer to the mo-
nolithic model as the PHOTOSHOP model. 

The basic monolithic theory idea is that one is given a single (rectili-
near) image, to which operations are applied to generate a final (rectili-
near) image. The basic sprite theory idea is a collection of free floating 
sprites (shaped images), typically but not necessarily overlapping, that are 
arranged to form a composition of sprites (a shaped image), where opera-
tions are applied to each sprite in the collection, or to groupings of the 
sprites. The sprite model reduces to the monolithic model if one of the 
sprites is made rectilinear and designated the “background” (an unneces-
sary distinction in sprite theory) which is forced to the back of the collec-
tion of sprites, and all other sprites are made to fall within the bounds of 
that background image, perhaps by cropping to it. The notion of “layers” 
in PHOTOSHOP is the monolithic attempt at accomplishing awkwardly 
what happens naturally in the sprite model. So the monolithic model is a 
special case of the sprite model. 

The monolithic model is not consistent with geometric models of 
computer picturing. As a consequence the user must learn two user in-
terface paradigms, one for geometry-based applications (such as Adobe 
ILLUSTRATOR) and another, quite different one for pixel-based applica-
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tions (such as Adobe PHOTOSHOP, of course). This distinction is of long 
standing, going back, for example, to Apple MACDRAW and Apple 
MACPAINT, respectively. 

The sprite theory of image computing is elegantly consistent with 
geometric models of computer picturing in that the natural user inter-
face employed by geometry-based picturing applications is the natural 
interface suggested by the sprite theory for sampling-based picturing ap-
plications. I will use this consistency as the path to convergence. 

Considering the beauty of the idea of the single user interface, it is 
surprising to me that the sprite theory continues to be insufficiently rec-
ognized. This lecture in an attempt to correct that situation. As discussed 
next, perhaps computation power has finally reached the point where 
the idea can finally take solid root. 

A drawback of sprite-based applications has been the requirement of 
the extra channel, the alpha channel. Furthermore, since the identity of 
sprites is typically maintained as long as possible in a sprite-based appli-
cation, the memory devouring nature of sprites was further increased. 
But the seemingly endless amount of almost free memory that is becom-
ing available because of the exponential decrease in element size de-
scribed by Moore’s “law” is alleviating the large-memory aspect of sprite-
based imaging. Moore’s law promises us an order-of-magnitude im-
provement about every five years, with a consequent necessity to change 
our mode of thinking. I suggest that we can now cease thinking about 
the “weight” of sprites and simply start using them as freely as we use, 
say, triangles. This was a motivation, in fact, for selecting the lightweight 
word “sprite.” 

I have worked out the sprite theory over about 30 years, starting from 
the 1977 invention of the alpha channel, through definition of a lan-
guage, ICEMAN, for working formally with sprites, to implementation in 
a prototype application turned into a product, called Altamira COMPOS-

ER. This lecture is informed by each of these steps. Many colleagues have 
helped along the way, as I shall acknowledge at the appropriate places. 
The next section details the history of the sprite theory and the origins of 
its terms. 
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ORIGINS 
 

Invention of Alpha 

My partner of many years, Ed Catmull, and I invented the notion of the 
integral alpha in the 1970s at the New York Institute of Technology (NYIT, 
or New York Tech). This is the notion that opacity (or, interchangeably, 
transparency) of an image is as fundamental as its color and should there-
fore be included as part of the image, not as a secondary accompaniment. 
To be very clear, we did not invent digital mattes (non-integral alpha) or 
digital compositing. These were obvious digital adaptations of known ana-
log techniques in the filmmaking world. We invented the notion of the 
alpha channel as a fundamental component of an image. We coined the 
term “alpha” for the new channel, and called the expanded pixel an 
“RGBA” pixel—for Red, Green, Blue, and Alpha. RGBA images—
composed, of course, of RGBA pixels—became fundamental to all work 
done by our team from that point forward, including Lucasfilm and Pixar 
(which Ed and I cofounded). 

Hundreds of thousands, millions surely, of images have been created 
in the last three decades with (integral) alpha channels. Many films have 
been made using them—for example, all those of Lucasfilm and its spe-
cial effects division, Industrial Light & Magic, made after 1982 with digi-
tal elements, all those of Pixar after 1986 when Pixar was founded, and 
all Disney animated films after 1990 when Pixar implemented the Com-
puter Animation Production System (CAPS) for Disney, and certainly 
after the purchase of Pixar by Disney in 2006. 

It is not hard to understand why no one had leapt to the admittedly 
simple concept of the integral alpha before Ed and I did. At the time, 
the mid 1970s, memory was very expensive. Our first video framebuffer—
which is what we called an 8-bit graphics card then (before high-
definition video) if you can imagine a graphics card the size of a refrige-
rator—with 640×480×8 bits, cost $80,000, and the next five cost 
$60,000 each. So an RGBA framebuffer—four of these video framebuf-
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fers ganged together—cost $260,000 in 1975 dollars.4 It was nontrivial in 
those days to increase memory usage by 25%. And we were the only fa-
cility in the world that had a 24-bit or 32-bit framebuffer, and one of on-
ly three or four places that had even a lowly 8-bit framebuffer (ignoring 
the military intelligence community, because we have never known what 
they had of course). 

I remember clearly the moment of the invention of alpha. Ed was 
working on his new hidden surface algorithm for a SIGGRAPH paper 
submission, published eventually as (Catmull 1978).5 He tested his tech-
nique by generating images of objects over different backgrounds. I was 
working with him to make these pictures since I knew where the interest-
ing background images were stored in our file system. I would position 
an image in the framebuffer that he would then render over, using his 
new technique. The compositing would happen as the rendering oc-
curred. This was tedious because each different background required a 
new rendering, then an excrutiatingly slow process. Ed mentioned that it 
certainly would make life easier if, instead of re-rendering the same im-
age over different backgrounds, he rendered the opacity information once 
with the color information at each pixel, put this into a file somehow, 
and then the image in the file could be composited over different back-
grounds without re-rendering. Immediately I told him that this would be 
easy. 

I could say this confidently because I had written the image file save 
and restore programs that we used.6 I already had versions for saving and 
restoring 8-bit and 24-bit images, and I knew exactly how to write a ver-
sion that would save and restore 32-bit images. I started right then and 
by the next morning had the full package, complete with Unix-style ma-
                                                                 
4 About $1 million in 2009 dollars! The Inflation Counter, <www.westegg.com/inflation/>, based on 
the Consumer Price Index, converted $260,000 in 1975 to $991,663 in 2007. Of course, one can 
now buy an entire laptop computer (or smaller) with full-color high-resolution graphics for under 
$500. The graphics “card” is just assumed anymore and is probably just a chip on a circuit board 
with the rest of the computer. 
5 See bibliography for source details, and for an explanation of SIGGRAPH, should it be an unfami-
liar term. 
6 I learned my imaging basics from Dick Shoup at the Xerox Palo Alto Research Center (PARC) in 
about 1974. Dick called his file save and restore routines savpa and respa. 
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nual pages using the “alpha” and “RGBA” terminology, ready for use. I 
had called the new channel “alpha” because of the classic linear interpo-
lation formula, 𝛼𝛼𝛼𝛼 + (1 − 𝛼𝛼)𝐽𝐽, that controls the amount of interpolation 
between two entities—in this case, two images 𝛼𝛼 and 𝐽𝐽. All Ed had to do 
was write the alpha coefficient into a fourth framebuffer (we had six 8-bit 
framebuffers at New York Tech at the time). Then I would save the four 
framebuffers—for Red, Green, Blue, and a new one for Alpha7—into a 
file with the new code, called savpa4.8 Then Ed or I or anybody could use 
the newly revised restore routine (called getpa) to composite the file im-
age over an arbitrary image already in the framebuffers. getpa would 
detect that the enclosed image had a fourth channel and use it to do 
compositing, as the image was read from the file. That was it. The 
integral alpha channel had been born. 

The “or anybody could use” phrase above is key. The integral alpha 
channel severed the image synthesis step from the compositing step, and 
this changed how digital compositing was done forever. When we started 
Lucasfilm graphics a couple of years later, in 1980, it was RGBA from 
the outset. The original framebuffers there were RGBA and all software 
was written to honor RGBA. This was the stage upon which the second 
act of innovation was played. 
 

Invention of Premultiplied Alpha 

Although we had added the alpha channel to our thoughts and computa-
tions and hardware at Lucasfilm in the early 1980s, we still did not fully 
understand it. In particular, it wasn’t until my Lucasfilm (later, Pixar) col-
leagues Tom Porter and Tom Duff invented the matting algebra (Porter & 
Duff 1984), introducing the new concept of premultiplied alpha, that the 

                                                                 
7 We called three 8-bit framebuffers ganged together an RGB framebuffer and four an RGBA fra-
mebuffer. 
8 The earliest dated documentation I have for this code is dated 13 Jan. 1978. Ed was preparing for 
SIGGRAPH 78. SIGGRAPH typically has a paper due date of early January of the corresponding year, so 
this is probably about when the invention actually occurred although it might have happened in 
Dec. 1977, to avoid the last minute crunch against the paper deadline. I was also preparing a paper 
for SIGGRAPH 78. The date on the submission is 6 Jan. 1978, and the code I used to generate figures 
for the paper is dated 28 Dec. 1977. 



SPRITE THEORY 

©2009–2010 Alvy Ray Smith 4 Working Draft 1/7/2010 

power of the idea started coming into focus. Since their solution is an ex-
cellent example of how carefully distinguishing geometrical ideas from 
sampling ones bears imaging fruit, I shall describe the Porter-Duff discov-
ery in detail.9 

There are two ways to think of the alpha of a pixel. As is usual in 
computer graphics, one interpretation comes from the geometry half of 
the world and the other from the sampling half. Geometers think of 
“pixels” as geometrical areas intersected by geometrical objects.10 For 
them, alpha is the percentage coverage of a pixel by a geometrical object. 
Imagers think of pixels as point samples of a continuum. For them, al-
pha is the opacity at each sample. In the end, it is the imaging model that 
dominates, because a geometric picture must be reduced to point sam-
ples to display—it must be rendered. Thus, during rendering, coverage is 
always converted to opacity, and all geometry is lost. The Porter-Duff 
matting algebra is based on a model that is easiest to understand by al-
ternating between the two conceptions.11 

The elementary imaging operation that we wish to elaborate is called, 
in (Porter & Duff 1984), the over operator. It captures the notion of 
compositing image 𝐽𝐽 over image 𝛼𝛼, where either 𝛼𝛼 or 𝐽𝐽 or both may be 
partially opaque. For ease, we will think of images 𝛼𝛼 and 𝐽𝐽 as being recti-
linear, the same size, in register, and each having four channels, three for 
RGB color and one for alpha—that is, opacity. Images were always still 
rectilinear at that time. 

                                                                 
9 Ed Catmull, Tom Duff, Thomas Porter, and I received an Academy Award for our “pioneering 
inventions in digital image compositing” on 2 Mar. 1996, for the work described here. The specific 
award is the Scientific and Engineering Award of the Academy of Motion Picture Arts & Sciences.   
10 A little square is a very common model for the “pixel” among geometers. I place this term in 
quotes to remind us that this is not a pixel (a sample) but a model for possible geometric contribu-
tions to the final sample. The last thing I want to promulgate is the notion that a pixel is a little 
square. See appendix A. 
11 The Porter-Duff paper is an excellent example of why the little square model for contributions to 
a pixel has become confused, in the geometry-based computer graphics world, with the pixel itself. 
All illustrations in that paper use the little square model. A unit circle could have been used equally 
effectively, however—or any other unit area region. 
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Think of the following geometrical model: A “pixel” is an area 𝛼𝛼 per-
cent covered by an opaque geometrical object with color 𝐴𝐴.12 Thus the 
amount of color contributed by that area is 𝛼𝛼𝐴𝐴. That is, we average the 
color over the “pixel” and come up with a single new color representing 
the entire area—the color 𝛼𝛼𝐴𝐴 is a point sample. 

Now think of another opaque geometrical object with color 𝐵𝐵 added 
to the original “pixel” area. Disregard for a moment the other geometric-
al object there. Assume that the new geometrical object has coverage of 
the “pixel” equal to 𝛽𝛽. So the “pixel” is contributing color 𝛽𝛽𝐵𝐵 due to this 
object. This again is a point sample representing the color of the second 
object. 

But now we use the geometry model to conceptually combine the 
contributions of the two objects in the “pixel” area. The second object is 
allowing only (1 − 𝛽𝛽) percent of the “pixel” area to be transparent to any 
objects behind it. We simply ignore the actual geometry of the two ob-
jects at this point and assume that, in general, the “pixel” is allowing 
(1 − 𝛽𝛽) times the color from behind, 𝛼𝛼𝐴𝐴, to show. This is added to the 
color due to the top object 𝛽𝛽𝐵𝐵. So the total color of object with color 𝐵𝐵 
over object with color 𝐴𝐴 is 𝛽𝛽𝐵𝐵 + (1 − 𝛽𝛽)𝛼𝛼𝐴𝐴. 

Notice that this result could be completely wrong if the geometry of 
the second object exactly coincided with that of the first. The bottom 
color would not contribute at all to the final color in this special case. So 
the model we are using is an approximation for the general case of com-
bining two images where we no longer have any idea of how the alpha at 
a point was determined. In an image there is no way to tell whether a 
point sample with a partial opacity comes from a partially transparent 
surface or from an opaque surface partially occluding the area 
represented by the point sample. 

The formula just derived from basic principles is this: For composite 
color 𝐶𝐶 obtained by placing a pixel (no quotation marks needed) with 
color 𝐵𝐵 and alpha 𝛽𝛽 over a pixel with color 𝐴𝐴 and alpha 𝛼𝛼: 

𝐶𝐶 = 𝛽𝛽𝐵𝐵 + (1 − 𝛽𝛽)𝛼𝛼𝐴𝐴 = 𝛽𝛽𝐵𝐵 + 𝛼𝛼𝐴𝐴 − 𝛽𝛽𝛼𝛼𝐴𝐴. 
                                                                 
12 A color typically has several components, here usually RGB. Each operation described here 
would therefore have to be performed on each component. 
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Notice how many multiplies this formula implies—three13 at each pix-
el for each color component. Considering that this formula is basic to 
computer graphics, and that multiplies are expensive,14 Porter and Duff 
observed that it could be reduced to one multiply per pixel per compo-
nent if the alphas were premultiplied times the color of an image. That is, 
if the color channels of image 𝛼𝛼 contained, not color 𝐴𝐴, but weighted 
color 𝛼𝛼𝐴𝐴, and similarly for image 𝐽𝐽, then the formula above reduces to 

𝐶𝐶′ = 𝐵𝐵′ + (1 − 𝛽𝛽)𝐴𝐴′ = 𝐵𝐵′ + 𝐴𝐴′ − 𝛽𝛽𝐴𝐴′  

where the primes indicate colors have been premultiplied by their corres-
ponding alphas. Such images are said to have premultiplied alpha.15 Of 
course, it is the color channels that are different, not the alpha channels, 
despite this terminology. Next I will show that premultiplied alpha was 
more profound than any of us knew at the time. 
 

Invention of the Sprite 

Although we had added premultiplied alpha to our thoughts and compu-
tations and hardware at Lucasfilm in the early 1980s and Pixar in the 
1980s and early 1990s, we still did not fully understand it. The evolution 
of the concept occurred in distinct stages. 

In the earliest days of computer graphics alpha was not even called al-
pha, but rather was called a “matte” or “mask.” It captured the old film-
making idea of a matte as a separate piece of film used to combine two 
other pieces of film. Typically a matte was not in the same storage file as 
the color image or images to which it was to be applied. It was not 
integral.  

In the non-premultiplied alpha case—the original conception of the 
integral alpha—a rectilinear color image had a rectilinear alpha channel 
that defined the opacity of each pixel. This was simply a convenience. 

                                                                 
13 Two, actually, with a little rearrangement and a temporary variable: 𝑇𝑇 = 𝛼𝛼𝐴𝐴,𝐶𝐶 = 𝛽𝛽(𝐵𝐵 − 𝑇𝑇) + 𝑇𝑇. 
14 They were especially expensive in the 1980s. Now we would just like to avoid extra steps. 
15 Porter and Duff actually called this case associated alpha, and the alternative unassociated, but I 
always had trouble remembering which was which, hence began using “premultiplied” in place of 
“associated.” 
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In the premultiplied alpha case—the modern conception of integral 
alpha—a rectilinear color image had a rectilinear premultiplied alpha 
channel that defined the opacity of each pixel. This simply sped up com-
positing computations. Appendix B argues the case for premultiplied 
alpha, emphasizing its elegance. 

The mental baggage of the rectangle dominates in all three of these 
formulations, reinforced by the common use of a (rectilinear) array for 
storage. The breakthrough idea—that of the shaped image, or sprite—came 
from this simple observation: Premultiplication by alpha completely clears 
transparent pixels of any current or future information. A pixel with an alpha 
of 0 requires, in the premultiplied alpha case, that all of its color chan-
nels be 0 too. The transparent pixels cease to exist conceptually since 
they are forever unusable. And once one ceases to think of empty pixels, 
it is an easy leap to shaped images. It is the same act as ignoring the emp-
ty space around the lines and vertices of a triangle in the geometrical 
world when one thinks of a triangle. 

You might argue that a sprite is stored in a rectilinear piece of memo-
ry, so the rectangle has not really “ceased to exist.” But this rectilinear 
memory is just a convenience and not required. I call a pixel with pre-
multiplied alpha of 0 a clear pixel. Notice that clear pixels do not have to 
be stored. Usually they are, in applications thus far anyway, but there is 
no reason other than convenience to do so. There is no useful informa-
tion in a clear pixel. It doesn’t exist unless a programmer chooses to 
force its existence for storage or programming convenience. 

It wasn’t until I began writing a language for image computing that 
the profundity of the idea began to hit me: The premultiplied alpha con-
cept had rid us of the rectangle! This was really a matter of identifying 
what was already in plain sight—just naming it—rather than an “inven-
tion.” Since many ideas in sprite theory evolved from the exercise of 
writing a language of image computing, it is worth describing that at-
tempt. 
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ICEMAN—A First Attempt at a Theory 

In the beginning was the understanding that a theory was needed at all. It 
came from my realization in the 1980s that the “image processing” market 
had not taken off because it had no center—the sampling-based half of the 
2D computer picturing world was undefined. The 2D geometry16 market—
also known as desktop publishing—was founded on the careful definition 
of 2D geometry embodied in the Adobe POSTSCRIPT language, but there 
was no corresponding accepted definition of 2D image computing. Every 
company or institution in the business had an internal idea, often vague, 
of a model that, of course, differed from the others—if not from other 
models within each company or institution itself (as I can attest). So I 
spent about a year at Pixar defining a language, called ICEMAN, to accom-
plish for images what POSTSCRIPT did for 2D geometry.17 But I have a sto-
ry to tell about the original insight that puts the problem in perspective. 

In 1988 I gave the “Midnight Sun Lecture” at a conference in 
Trømsö, Norway, about 200 miles north of the Arctic Circle, June 21, 
Summer Solstice.18 Besides being the most fun I ever had at a confe-
rence, I obtained advice there that changed my life and made my for-
tune, and from which this lecture proceeds. Pixar was only two years old 
and was selling hardware to keep everyone employed while we waited for 
the price of computation to drop enough to make animated films eco-
nomically feasible. We were having trouble in the marketplace distin-
guishing our product, the Pixar Image Computer, from the product of 
Silicon Graphics based on Jim Clark’s “geometry engine.”19 Many 
thought we were competitors although we knew we were not. In my talk 
I made a big point about how the two products differed, going on at 
some length. What I haven’t told you is that both I and my audience 

                                                                 
16 I will everywhere use 2D to mean “2-dimensional,” 3D for “3-dimensional,” and generally 𝑛𝑛D for 
“𝑛𝑛-dimensional,” for arbitrary non-negative integer 𝑛𝑛. I occasionally use the form (𝑛𝑛 + 1)D for 𝑛𝑛 
spatial dimensions and one temporal dimension. 
17 The ICE in ICEMAN stands for Image Computing Environment. The MAN reflects a similar 
usage in another Pixar product, RENDERMAN. I called it temporarily VAIL, for Volume And Imag-
ing Language. 
18 Second International Conference on Vector and Parallel Computing. 
19 Jim Clark had been our colleague at NYIT, and he taught me 3D computer graphics. 
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were highly fueled for this event by liberal amounts of aquavit. It was 
clear that I was to entertain, firstly, and inform, secondly. I was speaking 
at midnight, after all. I recall it as one of the greatest speeches of my life. 
That memory is suspect, but what happened at the end of the talk is not. 
A man came forward, obviously under the influence (of the aquavit, not 
me), and managed to say the fateful words, “I think all you have to say is 
that you don’t do geometry.” I knew instantly—even slightly stupified on 
aquavit—that he was right, that he had happened onto the correct mar-
keting message, always a difficult accomplishment in business. Because, 
you see, we had been emphasizing that our Pixar image “supercomputer” 
could also do geometry. That was a mixed message that put us seemingly 
in competition with Silicon Graphics. 

The very next day, after the intoxication had worn off, I sat down in 
my hotel room20 and began writing a theory of image computing, defin-
ing what it was that we actually did. I thought of it as defining the 
POSTSCRIPT of imaging. See (Smith 1988a). 

I was also just mastering C++ and object-oriented programming. So I 
took as my “masters class” in OOP the definition of a language for image 
computing and an implementation of it in C++. That language was 
ICEMAN. The definition of the language forced me to understand image 
theory and draw distinctions that had never been carefully drawn before, 
even among my colleagues. I then wrote a prototype application based 
on the concepts of ICEMAN and called it Composer. From this I started 
Altamira Software Corporation, as a spinout from Piar, which produc-
tized Composer as Altamira COMPOSER, and then sold it (and the com-
pany) to Microsoft in 1994.21 To explain the sprite theory, I will often 
take examples from ICEMAN and COMPOSER. 

The ICEMAN language remained with Pixar when I left to form Alta-
mira Software. Altamira COMPOSER was not based on the language ICE-

MAN, other than that it shared some definitions with it, and shared of 
course the inherent model too. I make this point to justify why I am call-

                                                                 
20 With hammers and sickles displayed out the window, to my amazement, on the smokestacks of 
ships in the harbor—the Berlin Wall would not fall for over a year. 
21 Microsoft’s imaging products, IMAGE COMPOSER, PHOTODRAW, and others came from this base. 
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ing ICEMAN a first attempt at a theory. Although it was a pretty 
thought—the language of imaging—it turned out to be overkill, as I will 
explain. 

I captured shaped images in ICEMAN with the image type. In Altami-
ra COMPOSER, I captured it in the image object, and called them that in 
Altamira marketing. This got confused with “layers” in the market, a re-
stricted and rigid concept introduced by Adobe as in response to my im-
age objects.22 Layers can be simulated with image objects but not vice 
versa. So here I am going to call the shaped image, or image object, a 
sprite. I wish I had thought of marketing them as sprites at Altamira. This 
would have simplified the marketing message and perhaps kept the con-
fusion with layers at bay. 

So it was alpha intimately in the pixel, the integral alpha channel, and 
premultiplied alpha—with transparent pixels forever superfluous and 
hence conceptually nonexistent—that led eventually to the shaped image, 
or sprite. The result has been to free the image from the tyranny of the 
rectangle and to make it—or more properly, a sprite—coequal to a geome-
tric object. This is one example of digital convergence between two quite 
different objects, once they are correctly represented digitally. 

As will be shown, the creation of the sprite (in the generalized mean-
ing here as a shaped image object) has changed the notion of image 
computing from “image processing”—which connotes doing things to a 
static monolithic rectilinear image—to “image composition”—which con-
notes a space full of floating, shaped, partially transparent sprites that 
can be rearranged in spatial position and depth arbitrarily. Of course, 
the ability to do arbitrary image processing or editing on each sprite is 
still completely available but is no longer necessarily the focus of an inte-

                                                                 
22 To get a feel for the limitations of the layer concept, try to generalize it to 3D. Freely floating 3D 
sprites easily generalize, but layers don’t. Furthermore, in 2D, layers usually connote a stack of recti-
linear images, all of the same size, in register. One has to carry around the mental baggage of the 
transparent portions as being part of the layer. One falls off the edges of layers—i.e., gets cropped to 
the rectilinear background. There is no conceptual problem with having two sprites at the same 
depth but in layer terminology, one has to assign the two sprites to the pre-existing layer to model 
the concept. This is unnecessary machinery. 
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raction with images. Most of the operations have to be rethought, how-
ever, to handle alpha and shape information. 

 
Origin of the Word “Sprite” 

The sprite terminology was first applied to very simple icons such as the 
gobbling head in the early PAC-MAN game. I had noticed already that the 
sprite was the nearest thing at Microsoft to what we were using at Altami-
ra, but failed to generalize their term and apply it to our image objects, 
thinking that sprites were still—as they were originally—dumb, extremely 
simple, rigid icons on personal computer screens, with jagged edges and 
few colors, exactly what we did not want associated with our image objects. 
Interestingly, however, it was an interview in Scientific American with Na-
than Myhrvold where he mentioned briefly a conversation with Bill Gates 
about a generalized notion of sprite that alerted me that I should visit Na-
than and tell him about our concepts before he “did it wrong.” This visit 
resulted in the purchase of Altamira by Microsoft, and belatedly in my 
adopting the extended notion of sprite as the name for shaped images. 

In the next part I begin to lay out the fundamental tenets and defi-
tions of the sprite theory of imaging. I will more carefully lay out distinc-
tions hinted at already. In particular, I will distinguish sampling-based 
picture making from geometry-based and carefully explain how to con-
vert from one to the other, and I will differentiate creative space from 
display space. This will supply enough machinery to enable defining the 
fundamental notions, those of image, for rectilinear sampled pictures, 
and sprite, for shaped sampled pictures. Succeeding parts will describe 
“algebras” for working with these entities. 
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FUNDAMENTALS 
 

Sampling vs Geometry 

An important contribution of the sprite theory is a careful delineation be-
tween imaging, or sampling, and geometry. I have drawn this fundamental 
distinction many times—for example, (Smith 1988a), but it bears repeating 
because the confusion is still common. See Figure 1. 

I call the act of making pictures with computers computer picturing. 
There are two different ways to make pictures with computers—that is, 
two different modes of computer picturing. The one most popularly un-
derstood is that based on geometry, often called “computer graphics” or 
“CGI” or “3D synthesis.” This includes, for example, Jurassic Park, Toy 
Story, or Ratatouille graphics from Pixar and Disney. The other is based 
on sampling theory, often called “image processing,” “image computing,” 
“image editing,” or just “imaging.” The digital pictures sent back from 
the Voyager and Cassini planetary flybys or from the Hubble telescope 
are of this type, as are digitized photographs from your digital camera, 
and digital videos as on <YouTube.com>. The Visible Human from the 
National Library of Medicine is an excellent example of 3D or volume-
tric imaging. In the sampling-based way, there is no geometry involved at 
all. In the geometry-based way, there is no sampling until the rendering 
step required for the display of the result. 

The sampling vs geometry distinction is fundamental. The two paths, 
geometry-based and sampling-based (or sample-based, or, equivalently, image-
based, or imaging-based, for the latter), have different mathematical bases 
(geometry and sampling theory), different heroes (Descartes and Nyquist, 
say), different histories, different journals and conferences, and so forth. 
Ivan Sutherland is often given credit for fathering computer graphics, 
but even if a true fact (and I don’t believe it is),23 then it only applies to 
the geometry half of computer picturing. 
                                                                 
23 Perhaps the most accurate statement is that Sutherland was the first with interactive editing of 
geometrical computer graphics. He was certainly preceded by others with interactivity and geometry. 
And the development of sampling-based computer picturing proceeded in parallel with completely 
different but simultaneous players. 



FUNDAMENTALS 

©2009–2010 Alvy Ray Smith 13 Working Draft 1/7/2010 

The reason for confusion is easy. We cannot see geometry. Geometry 
is abstract. In order to see it, we have to convert it into an array of sam-
ples, called an image (and the samples are called pixels, of course). This 
conversion step is called rendering. Since both approaches to picture mak-
ing with computers result in an array of pixels, many—especially non-
technical people—cannot distinguish the two processes. I will argue that 
creation is distinct from display, and it is in the creation step that the 
two modes of picturing are definitely and clearly different. 

The distinction being drawn is really between the continuous and the 
discrete. Geometrical descriptions are continuous and use the real num-
bers. Sampling descriptions are discrete and use the integers, especially 
in the case of pictures. Geometric descriptions, when they suffice, can be 
extremely succinct. Sampling descriptions, can describe many more 
things than geometry, but suffer from a definite lack of succinctness. The 
point is that both are equally valid, but different. I shall be very careful 
to distinguish geometrical concepts from imaging concepts below. You 
might think me excessive in this, but I almost daily see and hear confu-
sions that are directly due to a lack of care at this boundary. Once we are 
comfortable with the distinctions, then it is straightforward to imple-
ment the digital convergence of geometry and sampling. 

Some words or notions that put me on alert that the geometry–
imaging confusion is lurking are these (each is followed by a correction 
or criticism): 
 

A pixel is a little geometric square.24 

No. A pixel is a point sample. If it has any geometry at all, it is a point. See 
appendix A for my detailed argument against the little square misconcept of a 
pixel. 

                                                                 
24 The little square has been extremely important to computer graphics—we wouldn’t be where we 
are today in 3D synthesis without it. It is a simplifying model that represents contributions to a 
pixel. The mistake is to identify this simplifying model with the pixel itself, or equivalently of identi-
fying the geometrically-defined area of a model sampled with the sample that represents that area. 
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A pixel is located on the half pixels. 

No. Samples are array elements with indices as “location.” There is no such 
thing as a half pixel. The notion that there is one comes from the pesky little 
square model. See appendix A. 

A display has non-square pixels. 

No. Again, pixels are point samples, so “non-square” makes no sense. The 
correct idea is captured by the pixel spacing ratio, the sampling distance in the 
horizontal dimension divided by that in the vertical. So, instead of saying non-
sensically, “non-square pixel spacing,” say instead the meaningful, “the pixel 
spacing ratio is not 1.” See appendix A. 

Images have regions of interest. 

No. What this usually means is a geometrically defined region of an image, 
where the mapping of the geometry to the sampled image is assumed obvious. 
It never is.25 The alpha channel always captures the notion accurately and with 
much more generality. The alpha channel can always be used to make a geome-
trically “defined” region precisely defined. 

An image is a rectangle or rectangular picture. 

No. An image is, ignoring the alpha channel now, a rectilinear array of sam-
ples. It does not reconstruct, by the Sampling Theorem, into a rectangle or rec-
tangular picture,26 in any but the simplest use of that theorem—with the worst 
reconstruction filter, a box. 27 
 

                                                                 
25 If you don’t believe me, try this exercise: Consider a rectilinear image that is 3 pixels high by 3 
pixels wide. Assume that the “region of interest” is the entire image. Define the rectangle that de-
fines this region of interest. I can immediately think of several possibilities. I bet you can too. Which 
one of these is the “obvious” mapping? Does your definition assume little square pixels with centers? 
Does your rectangle use the notion of “half-pixels”? What is the geometric width of your rectangle? 
For example, is it 3 or 4? Does your definition take sophisticated reconstruction filters into account? 
Or just the too-simple box filter? And that’s just for a simple rectangular region of interest. 
26 See the section below entitled Continuous Operators on Discrete Sprites (page 29) and its Figure 
2. 
27 Well, the worst is really no filter at all: point sampling. 
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Creative Space vs Display Space 

Another fundamental distinction that the sprite theory makes is that be-
tween creative space and display space. I believe that this distinction is one 
of the most profound contributions of the computer to the arts. It is an 
obvious distinction in 3D computer graphics synthesis. There one models 
in 3D unbounded space with abstract geometrical objects, then displays 
views of this creative space that are 2D and restricted to the size allowed by 
some output medium such as 70mm film or 1080p high-definition video. 
The choice of display space is a separate act from the creating or modeling 
in creative space. It is a separate creative step, in fact. Another way to put 
it: Many display spaces can correspond to one creative space. 

We shall borrow this distinction completely into the imaging domain. 
This is new. Nearly all imaging applications (for example, PHOTOSHOP) 
confuse the two. For example, most popular imaging applications equate 
display space to the rectilinear image being edited. One opens an image 
(meaning rectilinear with no partial transparencies) and this maps to its 
own window on a display screen. Open another image and it is mapped 
to its own window. The fact that they could be two sprites in the same 
creative space is thus outlawed from the beginning. 

This is to be contrasted to a 2D drawing program for example. Here, 
just as in the 3D synthesis case, one creates in a space which is un-
bounded 2D (or unbounded 3D). Different geometric objects (a square, 
a triangle, etc) can be placed in that space and moved around relative 
one another, placed in different depth order, grouped, aligned against 
one another, and so forth. In the sprite model, image sprites can be dealt 
with exactly analogously. And once this is absorbed, then it is obvious 
how to implement the digital convergence of 2D image objects (sprites) 
and 2D geometrical objects. Simply put the two different objects in the 
same creative space and render them appropriately to display space, that 
is, with the renderer suitable to the type of the object. 
 

The Sampling Theorem 

I refer to sampling so often here that I want to make it very clear what ex-
actly I mean. Geometry, on the other hand, I will take as a given. We’ve all 
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learned geometry, if not formally, since we were children, but sampling is 
more subtle and not part of a general education. It is also pervasive in the 
modern world and deserves higher stature as an educational fundamental. 

Sampling is the act of choosing a discrete set of examples from a con-
tinuous set and representing the continuous set with the discrete set. 
That is, a sampled representation “throws away” an infinity of points, 
preserving only a more succinct and useful set. How is this possible? The 
Sampling Theorem tells us how. The fact that it is true is what makes the 
digital world—particularly digital images and digital audio—possible. 
Without sampling the digital worlds of television, movies, and audio 
would cease to exist. 

I do not intend this lecture to be about the mathematics of sampling 
theory, so I will present the Sampling Theorem intuitively. You will have 
to trust me that this loose way of speaking is thoroughly backed with 
hard-core mathematics, and that I have preserved enough of the caveats 
to make the loose understanding of it I hope you get here adequate. The 
mathematicians among you will cringe, but I think it is important that 
this subject be widely understood and it will not be if all the mathemati-
cal niceties are met. 

The first point I wish were more widely understood is this: the world 
is composed of frequencies. It is a strange point to most non-engineers 
and non-scientists, but it figures in any appropriate use of the Sampling 
Theorem. It is also fun in a way I will show you and more intuitive than 
first glance might suggest. 

In looking around yourself you might think that what is being pre-
sented to your eyes is a continuous field of colors—at every point in your 
view there is a color. This infinity of colored points constitutes what you 
can see at any moment. Now all engineers are taught early in their ca-
reers that a continuum, such as your visual field, can alternatively be 
represented as a sum of waves of different frequencies. This is the alter-
native view I want you to be comfortable with. 

I’m looking around my desk as I type. I see the Venetian blinds. They 
are equally spaced. That is, they form a spatial wave of a given frequency: 
The slats appear at the frequency of about one slat every inch and a half 



FUNDAMENTALS 

©2009–2010 Alvy Ray Smith 17 Working Draft 1/7/2010 

or so. Then I spot the books on my bookshelf. Their spatial frequency is 
about one book per inch or so. They are not equally spaced but they ap-
pear in a frequency range of, say, one book every half inch (mono-
graphs), down to one book every five inches (dictionaries). Then I look at 
the keyboard on which I am typing. The keys have a spatial frequency 
peculiar to keyboard keys. The floorboards have their spatial frequency. 
The room corners have their (much lower) spatial frequency. I look be-
tween the slats of the Venetian blinds at the trees across the street. Their 
leaves have a high spatial frequency or frequencies. 

Perhaps that is enough intuition building to understand the wonder-
ful leap that was made in the 19th century:28 There is a sum of (waves of 
different) frequencies that is exactly equivalent to the visual field as a col-
lection of colored points. In general, there is a frequency equivalent to 
the spatial color field. A full understanding requires a statement of the 
theorem giving the equivalency, but that would take us too far afield. 
The takeaway I want you to have is that scientists and engineers often go 
back and forth between a frequency representation of the visual world 
and a spatial color intensity representation. Actually between any (nice) 
continuous field and a frequency representation of it. (That “nice” is in-
cluded for the mathematicians—it is possible to find abnormal fields 
which fail, but the ones we shall be interested in do not, and are there-
fore “nice.”) I will nearly always use for examples a continuous visual 
field, perhaps changing in time, as the continuous field being sampled, 
but occasionally I will use an audio field. The summary idea is this: It is 
often easier to think in terms of frequencies than color fields (or sound 
pressure fields), and, importantly, the two ways are equivalent. 

Here’s a common way we talk about frequencies in a picture: If there 
are sharp edges in a picture, then we say that the picture contains high 
frequencies. What this means is that one would have to add in waves of 
very high frequencies, in the sum of waves model, to have a sum which 

                                                                 
28 It was Fourier who made this amazing discovery in the early 19th century. He was trying to 
solve the heat distribution problem in cannons at the time, to keep them from blowing up when 
fired. Fourier analysis is fundamental to all modern engineering since it is often to easier to work 
in the frequency domain than the spatial or temporal domain. 
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resulted in a sharp edge, in the color field model. The takeaway intuition 
here is: sharp edges imply high frequencies. 

Here’s another way to think about the frequency/color field equiva-
lency: The JPEG (.jpg) type of digital image file format is able to greatly 
reduce image file size by first converting the color field to its frequency 
equivalent, throwing out those frequencies that are not used or used on-
ly slightly, then converting back to the color field equivalent to the re-
duced frequency representation. This works spectacularly well. In other 
words, every time you save one of your photographs as a JPEG file, you 
yourself have invoked the frequency equivalent of a color field. So this 
should give you enough intuition about the omnipresence of frequencies 
in the world about you to let me explain the all-important Sampling 
Theorem. 

The Sampling Theorem makes this lecture possible. I shall express it 
intuitively, as I did the frequency domain vs. spatial domain equivalency: 

A continuous field can be represented perfectly by a discrete set of un-
iformly spaced samples, if (1) there are no frequencies in the field higher 
than half the sampling frequency,29 and (2) the reconstruction (of the 
continuous field from the discrete samples) is carried out with a filter of 
the “right” shape. 

Disregard for the moment constraint (2). To understand it I would 
have to explain “reconstruction” with a “filter.” I would also have to ex-
plain what the “right” shape of the reconstruction filter is. It is often the 
case in the real world, and imaging in particular, that we don’t actually 
have to do reconstruction explicitly, if we have obtained discrete samples 
according to constraint (1) only. Our display devices do the reconstruc-
tion, although not perfectly. But correct reconstruction is fundamental 
to image computing, so I will return to it. 

For now, just consider the Sampling Theorem so far as obtaining the 
samples is concerned, under constraint only that the sampling frequency 

                                                                 
29 The “half” might be confusing. To get an intuition for it, think of a wave as consisting of alter-
nating up parts and down parts. It makes sense, intuitively at least, that it takes two samples, one 
in the up part and one in the down, to capture the information converyed by that wave. Hence 
sampling has to occur at twice the highest frequency, equivalent to the statement above. 
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be at least twice the highest frequency in the continuous field. This is the 
only place where I actually ask you to understand that a visual, spatial 
field is equivalent to a sum of waves of different frequencies. Roughly, 
the Sampling Theorem states that that in order to accurately represent a 
scene with tree leaves in it, you have to sample the scene at least once per 
leaf—the more dense the detail, the higher the frequencies needed. 

Usually you have a fixed sampling rate and can only get a representa-
tion as accurate as that fixed rate allows, by the Sampling Theorem. If 
you have a 10 megapixel camera, then you cannot capture a scene with 
15 million changes in it, but a 20 megapixel camera can. This may seem 
intuitively obvious, but it is really quite profound. Remember that the 
pixels in your camera are not little squares. They are point samples, and 
the scene being reproduced is continuous whereas the point samples are 
spatially separated and discrete. This is the magic of the Sampling Theo-
rem. 

At this point you might say, “But the displayed pixels are are not 
points. They spread out and touch one another on the little display 
screen on the back of my digital camera.” This is where reconstruction 
comes in. Although you do not explicitly reconstruct the image you have 
made, the display device attached to your camera does, or the computer 
monitor on which you view your digital photos does. A characteristic of 
a real-world display device is that it physically cannot display a point. It 
causes a point to spread. This is equivalent to reconstructing the sample 
point with a reconstruction filter, although not the ideal one. 

The ideal reconstruction filter called for by the Sampling Theorem is 
of the form (sin𝑥𝑥) 𝑥𝑥⁄ , where 𝑥𝑥 is related to the sampling frequency. This 
classic filter, called the sinc(𝑥𝑥) filter, will not be pursued here because it 
is an ideal filter, infinite in extent, and hence not useful for computa-
tions using a finite computer. When we do explicit reconstructions, we 
shall use finite approximations to the ideal filter, and we shall be very 
careful about them. Suffice it to say here that the magic of the Sampling 
Theorem comes about by substituting, in a devilishly clever way, the in-
finity between sample points with the infinity of the reconstruction fil-
ter. I shall not say more here about how the Sampling Theorem works, 
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but I would like to try one more time to make you comfortable with the 
frequency version of the universe. 

Consider audio instead of video. It is well-known that music, in fact 
all audio, consists of frequencies of sound. Roughly speaking, each note 
is a frequency. The result of adding up all those simultaneous notes (fre-
quencies) and presenting them to our ear is a sound field, a continuous 
audio signal, that we interpret as, say, music. Digital audio works by 
sampling the 1D temporal sound field exactly the same way that a 2D 
spatial color field is sampled, by appropriate use of the Sampling Theo-
rem. The two worlds are so similar that the “group now known as Pixar” 
included digital audio scientists among its earliest incarnation at NYIT 
on Long Island, and also in its second incarnation at Lucasfilm in Marin 
County, California. We all understood we were involved in the same 
technology, but applied to two different continuous fields. We were in-
voking the same magic. 
 

Definition of Image 

An “image” will be defined to capture the lay notion of a rectilinear pic-
ture, then “sprite” will be defined from “image” to capture shape. 

An image is a finite nD rectilinear array of pixels of identical type. A 
pixel consists of one or more channelvalues of identical type, where a 
channelvalue is a number representing a sample. 

This deceptively simple definition hides a host of implications concerning 
finiteness, dimension, shape, type, sampling rate, alignment, and unifor-
mity. This discussion should also make it clear why no two organizations 
completely agree in general on the definition of an image, and hence the 
need for a model. 

An image must be finite. Strictly speaking, it must be representable in 
a digital computer. This means that an image is finite in extent in each 
of its dimensions and in the number of bits per channel. The definition 
is still quite broad. In an actual implementation of the sprite model, only 
certain available data types—for example, integers, floats, bytes—are avail-
able for representing channels, hence images. 
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An image is 𝑛𝑛D, with 𝑛𝑛 ≥ 0. The dimensions are not necessarily spa-
tial. Our model principally provides support for 2D images, time se-
quences of 2D images (movies, books), 3D images (volumes), and time 
sequences of 3D images (volume movies). The model supports 1D im-
ages mainly to the extent they are subimages (scanlines) of 2D or 3D im-
ages, and it supports 0D images to the extent they are trivial subimages 
(pixels) of higher dimensional images. But time and space are just names 
for the dimensions; the model does not care what they really represent 
(although we will make a sampling assumption as will be seen). And sub-
images are images, so the model supports 0D through 4D images and is 
theoretically capable of higher. 

An image is rectilinear. This means that its support is rectilinear, 
where the support of an image is the set of locations at which its samples 
are taken. The support for a 1D image is a finite set of points along a 
line segment. The support for a 2D image is a finite set of points on a 
rectangle-bounded plane. The support for a 3D image is a finite set of 
points in a volume bounded by a right rectilinear parallelepiped. And so 
forth. Clearly, non-rectilinear images are necessary—for example, as 
brushes in a paint program. The sprite theory handles arbitrary shape 
with an imaging notion, not a geometrical one, and will be discussed 
subsequently. 

An image has pixels of identical type, and its pixels have channelva-
lues of identical type. The number of channelvalues per pixel is called its 
ply. The type of a pixel is determined by the number and type of its 
channelvalues. For example, a pixel in a prepress application might have 
five channels—representing yellow, magenta, cyan, key, alpha (YMCKA)—
where the channelvalues are 8-bit unsigned bytes. All pixels in a single 
image must have this same type. In our prepress example, a pixel with ply 
more than, or less than, five is not allowed in an image of these pixels. 
An image may also be thought of as a list of channels, where the 𝑖𝑖th 
channel of the image is an array of all the 𝑖𝑖th channelvalues of the pixels 
comprising the image. An image has the same ply as its pixels of course. 
The model provides utilities for combining channels into a thicker (in 
the sense of more channels, or higher ply) image, or for extracting chan-
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nels from an image to form another thinner image. With these func-
tions, arbitrary combinations of images with different pixel types can be 
effected so long as they have channelvalue types in common. 

It is easy to imagine channels with different types. They are 
represented in sprite theory as separate images bound together with a 
higher-order data structure.30  

An image consists of samples. A fundamental assumption of the 
model—captured by the final phrase in the definition: representing a sam-
ple—is that each channel of an image can be reconstructed, using the 
Sampling Theorem, to retrieve the continuum which it represents—for 
example, a color separation, an electromagnetic field, an airflow over a 
wing, or a height or depth field. This does not mean that such a recon-
struction will ever happen, nor does it imply that the samples were taken 
correctly in that the continuum was low-pass filtered for removal of in-
appropriate frequencies. Neither does it imply that anything fancier than 
point sampling will actually be employed in an image computation. The 
assumption of sampling does restrict the class of things which can be 
called images. For example, a 4×4 matrix is generally not an image. A 
program—a 1D list of numbers—is not an image. A list of telephone 
numbers or polygons is not an image. And since samples must be num-
bers, the following are also not images: a tiled floor, a chessboard, a deck 
of cards, a Rubik’s cube. More pertinently, an image of geometrical ob-
jects is not an image unless it is a digital representation of those objects—
that is, a sampling, or “rendering” or “scan conversion,” of the conti-
nuous picture of the objects. Similarly, in the the model sense, a photo-
graph or painting is not an image unless it is digitally represented. A goal 
and important contribution of the model is to properly take care of fil-
tering while hiding the difficult details of this task from the user of an 
application, unless the user specifically wants to deal with the subject. It 
should be added that there is no way for the model to “know” whether 
an array of numbers is an image or not. Many of the capabilities of the 

                                                                 
30 Altamira COMPOSER routines always had a first argument pointing to an “imagestruct” which 
was used for such higher order bindings, and for threading all “global” variables to the routines. 
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model are undoubtedly useful for computing on these non-image arrays 
as well. 

An image has all channels at the same resolution. The sizes or extents 
of the dimensions can each be different, but whatever the n sizes are in 
one channel must be the same in all other channels of an image. For ex-
ample, a 2D image with red, green, and blue (RGB) channels which has 
a red channel of size 1280×768 samples, must have the green and blue 
channels also at sizes 1280×768. There are common cases that seem to 
violate this part of the definition. For instance, a depth channel asso-
ciated with our RGB example might be “supersampled” to have 8x8 
depth samples per each color sample. Or in a graphic arts example, the 
line art or text might be a single-bit channel at a resolution six times as 
high as the “contone” (continuous tone) color channels which might be 
CMYK channels of 8 bits each, or 16 bits each. Our model requires that 
images at different resolutions be treated as separate images.31 An appli-
cation binds them into a single entity as a higher-order structure. 

An image has all samples of a pixel aligned at a single location. This 
means in our example that the RGB samples in a single pixel correspond 
to the color at a single point of the picture represented by the image. 
Strictly speaking, the definition has no requirement that this be so, but 
the model assumes it. An application built on the model might elect to 
ignore this assumption. As for different resolutions, the model handles 
nonaligned channels as different images bound together, by an applica-
tion program, with a higher-order data structure. In graphic arts, for ex-
ample, the four color separations of an image are often converted to 
halftone spot arrays which are rotated relative one another. If these half-
tone separations are represented as numbers aligned with the rotated 
axes, then they cannot be channels of a single image; a higher-order im-
age structure is required. But if the rotated halftones are actually 
represented with very high resolution, aligned bit arrays, then they may 
of course be treated as channels of a single image. 

                                                                 
31 Or that a multi-resolution representation be hidden from users using the object-oriented para-
digm. 
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An image has all samples taken uniformly in each dimension. The 
rate or spacing can differ between dimensions, however. Again, strictly 
speaking, the definition does not require this, but the model assumes it. 
To be clear, the model does not assume resampling cannot occur non-
uniformly, as in image warping, but it does assume that the input and 
output of such a computation are uniformly sampled. An application 
can elect to ignore the assumption. An example where this might be ap-
propriate occurs in medical volume imaging. CT slices are frequently 
acquired at nonuniform spacings through a patient’s body. An applica-
tion program in this case would have to deal with input volumes of non-
uniform sample spacings. 

Finally, the model of image assumes samples are taken uniformly and 
aligned with its rectilinear edges—that is, on the nodes of a rectilinear 
grid. So hexagonal sampling grids, for example, are not used by the 
model. Again, an application could elect to disregard this assumption. 

Despite all the subtleties in the definition, the model definition on 
the whole captures most of the intuitive notions while maintaining a 
remarkable simplicity. This is crucial for widespread applicability. 

The actual data representation of an image is not specified, in the spi-
rit of object-oriented programming. It could be an array, a set of arrays, a 
tiled (paged) set of arrays, a multi-resolution and tiled set of arrays, etc. 

Despite the remaining generality of the definition of image, in prac-
tice—and in the remainder of this lecture—an image will always be taken 
to consist of color samples as pixels with the addition possibly of an al-
pha channel to each pixel. This is essentially an application of the restric-
tion that pixels represent samples of a continuum, where the continuum 
is a color field. In particular, I shall nearly always use an RGB image or 
an RGBA image as exemplar—one with Red, Green, and Blue channels 
for color, and possibly an Alpha channel for opacity. I assume that the 
theory is easily applied to images of different structure or meaning. It 
will become clear I believe that much of the machinery of the theory is 
independent of the pixel structure and hence widely applicable. 

Here then is the definition of the “image” actually used in practice in 
this lecture and the one actually realized in Altamira COMPOSER: 
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An RGBA image is a finite 2D rectilinear array of pixels of identical 
type. A pixel consists of 4 channelvalues of identical type, where the first 
three represent a sample of an RGB color field, and the fourth A 
represents a sample of the corresponding opacity, or alpha, field. An RGB 
image is an RGBA image without the alpha channel. 

So here it what has happened in this part: I started with a simple, 
clean definition of image. I suspected that many would find fault with 
this definition, and I assumed that the fault would generally be found to 
be a lack of generality. So I discussed at length each decision that contri-
buted to the form of the definition adopted. Finally, I tackled the reverse 
problem, that the definition was still too general. Rather than make a 
clumsy specific definition,32 however, I have opted to stay with the origi-
nal generality (restricted as it is) and simply state the actual further re-
strictions. I want it to be clear that the theory applies more generally 
than to the restricted images I shall actually use here for explanation.   

We are now ready for the definition of the key entity in the theory, 
the sprite, or shaped image. 
 

Definition of Sprite 

As a brief review: Non-rectilinear shape of an image was traditionally de-
termined by another image, called a matte. The matte can be a separate 
image or reside in a channel of the image to be shaped. Such a channel is 
sometimes referred to as a matte channel, or equivalently an alpha channel. 
In sprite theory the matte is always an (integral) alpha channel, and it is 
premultiplied: Where it is 0, the corresponding image does not exist.33 
Where it is 1,34 the image is opaque. Where fractional between 0 and 1, 
the corresponding image is partially transparent. This powerful notion 
                                                                 
32 Such as: An image is a 0D, 1D, 2D, 3D, or 4D rectilinear array of pixels where a pixel consists 
of one or more channelvalues of identical type, all representing color field component samples, 
except with perhaps one representing an opacity field sample. 
33 Or equivalently, to be completely transparent. I have never dealt with this possibility in prac-
tice, but it can be conceived so is a potential problem. The pixel object might have to be aug-
mented with a flag this special case in case of the problem. 
34 We use a real number for alpha between 0. and 1. for convenience only. It has often been realized 
in an 8-bit unsigned byte with values between 0 and 255. 
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allows arbitrary shapes including disconnected components and compo-
nents with holes. The following definition captures the sprite theory no-
tion of shaped image: 

A sprite is an image with an alpha channel where the non-alpha channels are 
assumed to have been premultiplied by the alpha channel. 

A consequence of this definition is that no channelvalue in a pixel’s 
non-alpha channels can exceed the channelvalue in the pixel’s alpha 
channel.35 In particular, transparent pixels (alpha is 0) have all non-alpha 
channelvalues 0 also. Such a pixel is referred to as clear. As already ar-
gued however, it is really a pixel that doesn’t count anymore—that con-
ceptually no longer exists. Some very efficient data representation 
scheme for the object might not even allocate memory space for clear 
pixels. In fact, to refer to clear pixels at all is problematical but reflects 
the reality that sprites are nearly always represented in rectilinear arrays 
that do “realize” clear pixels. 

One can use more general images or non-premultiplied alphas when 
necessary or convenient—as does Altamira COMPOSER—but the most im-
portant object is the sprite. The particular sprite that will be used here 
for explanations is this not surprising restriction of the general defini-
tion: 

An (RGBA) sprite is an (RGBA) image where the RGB channelvalues are as-
sumed to have been premultiplied by the alpha A channel. 

It is convenient to talk about the upper-left pixel of a sprite, just as we 
do of an image. Of course, the upper-left pixel might not exist, in the 
sense that it has an alpha of 0. In that case, the upper-left pixel is that 
which would exist at the upper left if the support of the sprite were ex-
tended to a rectilinear set of points just including the support of the 
sprite. In fact, the most common way sprites have been represented so 
far to my knowledge is with rectilinear arrays of points just holding the 

                                                                 
35 This follows from the sprite theory definition of pixel which requires that all channels have chan-
nelvalues of the same type. If we allowed the alpha channel to be an exception to this rule and let it 
be a float with value 𝛼𝛼 on [0. ,1. ], then a (premultiplied) non-alpha channelvalue 𝐶𝐶 cannot exceed  
𝛼𝛼𝐶𝐶𝑚𝑚𝑚𝑚𝑥𝑥 , where 𝐶𝐶𝑚𝑚𝑚𝑚𝑥𝑥  is the maximum channelvalue 𝐶𝐶 may attain.  
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sprite, for which case the upper-left pixel is well-defined, as a pixel ad-
dress anyway. Again, the reality of application writing usually “realizes” 
the clear pixels of a sprite, so we shall talk about them for convenience as 
if they exist. 
 

Definition of Shape 

Sprites have shape. That is their distinction. The basic notion of the shape 
of an image with an alpha channel is Hume’s “extension” of the image, 
being the subset of its pixels with non-0 alpha.36 For a sprite this is simply 
the following: 

The (hard) shape of a sprite is exactly the support of the sprite.37 

An interesting non-Humean variation on the definition is this: 

The (soft) shape of a sprite is exactly the alpha channel of the sprite. 

This notion of shape includes not only extension (support) but opacity 
(alpha), or a measure of “how much” occupancy of space a pixel has. I will 
usually imply the soft shape when I use the word “shape.” 

It should not be forgotten that our definitions are meant to apply to 
temporal duration as well as spatial extension. So a (2+1)D temporal se-
quence of digital sprites has a space-time shape—either simple space-time 
occupancy in case of hard shape, or a weighted occupancy of space-time 
in case of soft shape. I believe this world of shaped space-time sprites is 
an interesting one awaiting serious exploration. 

Thus the shape of a sprite (or an image in general) is defined in sam-
pling terms, not geometrical. It is sometimes convenient—for example, 
succinct—to describe a shape geometrically (with a “region of interest” or 
a “domain of definition”), but what is always meant in sprite theory is 
this: The geometric “shape” is rendered into an image in an alpha chan-

                                                                 
36 Hume apparently did not take complete transparency into account when discussing the exten-
sion of an object. Surely the notion of extension must include the space occupied by a completely 
colorless (and transparent) object. If so, then Hume’s notion of extension and our notion of non-
0 alpha are not synonymous. 
37 So the quotation at the beginning of this lecture should have been introduced with this: “Hume 
on extension (and alpha support).” 
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nel, at which point it becomes a shape by our definition. Again, the 
geometrical is kept cleanly distinct from the sampled. 
 

Coordinate Systems 

The notion of coordinate system usually comes equipped with real space 
connotations when applied to images, but in sprite theory an image does 
not have a real coordinate system. As usual, the continuous and discrete 
worlds are held carefully apart. Instead, the pixel “coordinates” of an im-
age are simply the corresponding integer array indices. This is easy and 
already standardized. Nearly all modern programming languages use 0-
based indices. The upper left pixel in an image thus has indices [0][0].38 Its 
horizontal index increases to the right; its vertical index increases down. 

The notion of a real coordinate system is often useful in an imaging 
application. For example, the creative space of Altamira COMPOSER is a 
2D continuous, unbounded space with positive and negative real coor-
dinates in both dimensions. In this application, a set of sprites can each 
be arbitrarily located in this space, so we must specify the mapping of a 
sprite’s integer array indices to the real coordinates of the space. Altami-
ra COMPOSER uses a creative space coordinate system that makes the 
mapping of sprites to it almost trivial. Its horizontal, x, axis increases to 
the right; its vertical, y, axis increases down. Then a sprite can be posi-
tioned at any integer coordinate pair in the space by simply mapping its 
upper left pixel (with indices [0][0]) to that integer pair. The pixels of an 
image or sprite fall always on points with integer coordinates. 

The important point is that an image has lost the notion of any coor-
dinate system that might have existed in the continuous entity that was 
sampled to yield the image. It is just a matrix. Any coordinate system as-
sociated with it has to be defined by an explicit mapping, and such a 
mapping is external to the image or sprite itself. 

You will notice that I have begun to alternate between the words “im-
age” and “sprite.” From here on, I will tend to use “sprite” most fre-

                                                                 
38 Using C-like array notation, with the left coordinate denoting row number, hence the vertical 
dimension. This would be (0, 0) in most other matrix address notations, the left coordinate being in 
the horizontal dimension. 
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quently, because an image is just a special case of a sprite. As already in-
dicated, I will also talk about the upper left coordinates of a sprite al-
though the sprite might not actually exist there. 

Altamira COMPOSER also has a notion of depth priority for its sprites, 
in the sense that sprites can lie in front of, or overlapping, other sprites. 
In other words, there is a front-to-back ordering of any set of sprites. Al-
though there really is no third creative space dimension in Altamira 
COMPOSER, it is sometimes convenient to talk as if there were one, called 
z, that increases away from the plane as a viewer might observe it to “see” 
the sprites. (We have not yet talked about actually displaying the sprites, 
so this is an abstract viewer.) Notice that the 3D space implied by the 
third coordinate is a right-handed coordinate system. There is no re-
quirement in our imaging model that this real coordinate system be used 
in an application, but it is a remarkably simple one.39 There is a re-
quirement, however, that images and sprites be thought of computational-
ly as arrays and indexed in the standard way—even if not actually stored 
that way. Of course, sprites are to be thought of intuitively as shaped im-
ages with nonexistent clear pixels. 
 

Continuous Operators on Discrete Sprites 

There are two ways to slide a sprite around in creative space. As usual, the 
two conceptions come from the two worlds, continuous and discrete, and 
I shall carefully distinguish them. One way is to move a sprite to a new lo-
cation. This means to reassign its upper-left pixel to a new point with in-
teger coordinates. This is the default action a user of Altamira COMPOSER 
gets when he or she clicks on the displayed representation of a sprite and 
drags it to a new position. The corresponding sprite is assigned a new loca-
tion in the creative space (and also displayed in a new location in display 
space, which I have not yet detailed—see page 69). 

The other way is to translate it to an arbitrary real location. As so 
simply stated, this action does not make any sense. Sprites aren’t defined 
on real locations. Yet this is the usual kind of statement one often hears 
                                                                 
39 It is also very familiar since it is the natural space of the written word for most, if not all, Indo-
European languages. One reads from left to right, from top to bottom, and from front to back. 
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about images with no further explanation, as if it were obvious what is 
meant. So here is our first example of the continuous model we associate 
with our discrete sprite model and to which continuous operators are 
applied. Detailing the translation operator will explain exactly how to 
think of continuous operators applied to discrete images and sprites. 
Our model derives directly from sampling theory. Figure 2 shows how to 
think of a continuous operator on a discrete sprite: 

First, a sprite is reconstructed into a continuous object by applying a 
reconstruction filter to its samples, as the Sampling Theorem instructs us 
to do. Then the continuous operator is applied to the continuous object 
so obtained. Then the result of the operation, a new continuous object, 
is resampled by another application of the Sampling Theorem into a 
new sprite. For example, a translation of a sprite is performed by recon-
structing the sprite, translating the continuous entity so obtained by the 
desired amount, and then resampling at the integers. The alpha channel 
is reconstructed, translated, and resampled too.40 Now that we know ex-
actly how translation is applied to a sprite, we can safely speak of “trans-
lating a sprite.” And this model can be extended straightforwardly to the 
formula reconstruct-transform-resample to model any continuous transfor-
mation of an image or sprite. 

Technically speaking, the transformed continuous entity should be 
low-pass filtered before resampling to remove any high frequencies con-
tributed by the transform step—to satisfy the Sampling Theorem.41 Of-
ten, as in translation or magnification, no high frequencies can be intro-
duced, so the filtering step can be skipped. We should always be aware 
that the Sampling Theorem requires removal of frequencies greater than 
half the sampling rate before sampling can be performed accurately. So 
strictly speaking the formula is reconstruct-transform-filter*-resample, where 
filter* means “filter if you need to.” I find this a bit clumsy so will use the 
abbreviated form, so long as you remember that it is an abbreviation. 
                                                                 
40 One of the beauties of the premultiplied alpha representation is that all channels are treated iden-
tically. See appendix B. 
41 “Low-pass” filtering simply means that all frequencies below a designated “cutoff” frequency 
are allowed and all frequencies above it disallowed. The cutoff frequency for Sampling Theorem 
application is half the sampling rate. 
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It is important to notice what I have not said. I have not ever used the 
word “rectangle.” In fact, the edge of a reconstructed sprite is, in general, 
not accurately represented by a rectangle. See Figure 2 for details. I have 
not ever said what the “shape” of a pixel is. We know by now that this 
does not make sense. Notice that if any continuous model of a pixel is to 
be defined, it should probably be intimately related to the reconstruction 
filter being used—in general, not a simple shape. I have not specified 
what the reconstruction filter is.42 The correct one, according to the 
Sampling Theorem, is the sinc filter,43 but this is infinite in spatial extent 
and thus not practical to use. In practice, a variety of approximations to 
the sinc filter, with finite spatial extent, are used. The worst approxima-
tion used is the simple box filter (source of the infamous, and inaccurate, 
little square model of the pixel). Altamira COMPOSER generally uses 
much more sophisticated cubic filters.44 The filter used is an implemen-
tation detail, but I highly discourage the use of box filters—ever—to ensure 
high quality results. It should probably go without saying, but I will any-
way: It is an error to use no reconstruction filter at all. 
 

The Acid Test, or Final Exam 

The following problem was proposed to me by an email correspondent.45 
If you solve it correctly, then I have probably conveyed to you the funda-
mentals of sprite theory, and why there should be a sprite theory. Here is 
the test, as originally presented to me. I applied the theory and was led 
immediately to the right result. See if you can. This is the kind of problem 
the theory is meant to resolve: 

If I scale a 2 × 2 pixels floating point image whose values are (0,0,0,1), 
 (1,0,0,1), (0,1,0,1), (1,1,0,1)—by 1024 ×—what is the result? 

                                                                 
42 The class of reconstruction filters represented by the footprint of Figure 2b is a simple one. The 
reconstruction filters of Altamira COMPOSER, for example, are generally bicubic which means that 
their footprint extends across two sampling intervals in each direction, not just one as shown in the 
figure. See Figure 3. So filters generally overlap a great deal. 
43 Recall that the sinc(𝑥𝑥) filter is generated from the function of form (sin𝑥𝑥) 𝑥𝑥⁄ . 
44 My favorite reconstruction filter is the bicubic filter formed from the Catmull-Rom cubic 
spline basis function in each dimension (Smith 1983). 
45 Pierre Jasmin. 
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In sprite theory words: Consider a image of size (2, 2) where the four opa-
que RGBA pixels are black and red in the top row, and green and cyan in 
the bottom row. Scale this image by 1024. What image do you get? 

If your result is an image of four large squares of solid colors, the 
same four solid colors as the four given pixels have, then you have failed 
the test. You are stuck in geometry, have confused it with imaging, and 
have not correctly understood sampling. What you have done is to mag-
nify the geometric image of four squares of the given colors in real con-
tinuous space. Then you resampled (without filtering for high frequen-
cies—a sampling theory error) into an image.46 The “scaling” in this case 
is actually just simple pixel replication, not true magnification. 

Here’s how to apply sprite theory: One of the fundamental assump-
tions is that an image represents a correctly sampled continuum. To per-
form a true magnify by 1024 then you must reconstruct, transform, and 
resample. So, using a good filter of course (not a box, in particular), you 
would proceed to place a copy of it at each pixel, weighted by the values 
there. Then you would add up all the contributions of the weighted fil-
ters wherever they were non-0 to get the final reconstruction. I am de-
scribing this in words because the continuum you get depends on the 
reconstruction filter you use. If the filter has support {−2. , 2. } in each 
dimension, as is typical for good reconstruction, then the reconstruction 
will be non-0 over the range {−2. , 4. } in general in each dimension. In 
general it will not be a square or a rectangle (see Figure 2) and it will not 
consist of solid colors, but rather ramps of color between the given four 
values. Now this continuous object is scaled by 1024 in each dimension. 
Since it being scaled up in size, no high frequencies are introduced (in 
fact, all frequencies are made lower since they are spread over greater 
distances), so no low-pass filtering is required. Now the larger, conti-
nuous object of ramped colors and sloping edges is resampled at all in-
teger points where the object is non-0. This is the sprite theory (or sam-
                                                                 
46 The intuition you need here is this: A hard edge in continuous space requires extremely (infi-
nitely) high frequencies to represent in the frequency domain. Four geometric squares of solid 
color are separated by such hard edges. One would know that high frequencies were present, 
intuitively, and that therefore low-pass filtering must be applied before resampling. This filtering 
would have the effect of softening the transition from one color into the neighboring one. 
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pling theory) result. It has no areas of constant color. It is wider and tal-
ler than the original (2, 2) image. There is never any question, given the 
theory, of what the outcome has to be. There is never any question, giv-
en the theory, about where the output pixels “are located.” There was no 
geometry at any imaging step, because we rigorously kept the discrete 
distinct from the continuous. The only variation allowed is the natural 
one that depends on the shape of the reconstruction filter used. Thus 
the exact filter used is important data to maintain and convey to others. 

If the theory is widely adopted, then no two applications should pro-
duce different results, given the same reconstruction filter, as is now the 
case. There should be no slight shifts between results (a coordinate sys-
tem inconsistency), or grossly different outcomes (the sampling-geometry 
confusion). As I have said, I have seen all these errors, even within a sin-
gle organization. 
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BOX ALGEBRA 
 

Box Algebra 

Support calculations are common in image computation, just as address 
or pointer calculations are common in ordinary computation. Sprite 
theory provides a rich arithmetic, called the box algebra,47 for support calcu-
lations. 

By sprite theory convention, the pixels of an image or sprite always re-
side on the integer grid. Each point of the 𝑛𝑛D integer grid is described by 
an 𝑛𝑛-tuple of integer coordinates, an 𝑛𝑛D integer point. The integer point 
associated with a pixel in an image can be thought of as its address in 
integer coordinate space—its pixel address—not to be confused with a phys-
ical memory location allocated to hold the pixel. The support of an image 
is the set of pixel addresses of its pixels, and the support of a sprite is the 
set of its non-clear pixel addresses. The rectilinear support of an image or 
sprite can be represented by its minimally enclosing box. We again care-
fully distinguish a discrete concept (box) from a geometrical one (rectan-
gle). A box is to be thought of as a (rectilinear) bag of pixels—the support 
of the pixels actually—not as a rectangle. 

Rectangles—real geometrical rectangles—are often handy, so points 
and boxes with real coordinates are defined to represent them. As usual 
in digital computation, we will use a floating-point type variable to ap-
proximate real numbers. That type variable will be said to be of float 
type. 

This box algebra consists of arithmetic and set operations, extended 
to points and boxes, and new operators for box validity, intersection, 
and construction. Assignment is extended to points and boxes. The in-
timate relationship between the two is spelled out. 

 

                                                                 
47 I attempt to justify the use of the word “algebra” in a later section, page 45. 
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Support 

When an image is declared, its pixels are located at all 𝑛𝑛D integer points 
in the rectilinear set of points extending from 𝟎𝟎 ≡  (0, 0, … , 0) to 
(𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠0– 1, 𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠1– 1, … , 𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠𝑛𝑛– 1), where 𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠𝑖𝑖  is the number of pixels of the 
image in dimension 𝑖𝑖. Any rectilinear subset of an image is also an image, 
or subimage. Subimages can reside anywhere within an allocated image so 
may have arbitrary nonnegative coordinates in the range of coordinates 
spanned by the image. The rectilinear set of integer points which index 
the pixels of an image or subimage form its support. Similarly for sprite 
and subsprite, but remembering in this case that clear pixels are intuitively 
nonexistent. 
 

Points 

Image computations frequently refer to image support points or to refer-
ence points within images. Points are also often used to express offsets, in 
the sense of a vector relative the origin of a coordinate system. Sprite 
theory provides two formal data objects for points, called point and float-
point, for points with integer and floating-point coordinates, respectively. 
Henceforth, we restrict ourselves to the 2D case, generalization to higher 
dimension not being difficult. As a practical example, Altamira COMPOS-

ER implemented only the 2D case. 
A point has two elements, called coordinates, of type int.48 A float-

point has two coordinates of type float. The coordinates are assumed to 
be named x and y. For convenience, given a point or floatpoint p, its 
coordinates are referenced as 𝑝𝑝. 𝑥𝑥 and 𝑝𝑝.𝑦𝑦. In the actual implementation 
of Altamira COMPOSER, there are methods used for setting or returning 
these coordinates, but it is more succinct in documents such as this to 
use the ‘.’ notation. We shall call this an example of the meta-notation, 
which tends to look better in print than the typical programming lan-
guage. 

There is a special point called zeropoint always available that is simp-
ly a point with two 0 coordinates. Altamira COMPOSER implements this 

                                                                 
48 Undefined types are assumed to be C-like types. 
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as a method point ZeroPoint(void). A useful method is boolean IsZero-
Point(point p). A boolean, naturally, has two values true or false. 

Another very useful method is boolean EqualPoint(point p, point q) 
that is true if p is exactly equal to q coordinatewise. We do not represent 
this in meta-notation with 𝑝𝑝 ≡  𝑞𝑞. See the relational operators below to 
discover that 𝑝𝑝 ≡  𝑞𝑞 is meta-notation for booleanpoint EQPoint(point 
p, point q), returning a booleanpoint rather than a boolean. I will re-
turn to this again, after I introduce the type booleanpoint, although its 
definition will probably not come as a surprise. 

A useful point operator in 2D is one that simply exchanges the coor-
dinates of a point. In Altamira COMPOSER the method is point Transpo-
sePoint(point p). 

A point can be cast to a floatpoint, and vice versa. The action is the 
one expected by anyone familiar with C: ints are cast as floats, coordi-
nate by coordinate, or the reverse, in which case truncation is per-
formed. In the Altamira COMPOSER implementation, these casts are per-
formed by explicit methods point IntPoint(floatpoint p) and floatpoint 
FloatPoint(point p). The meta-notation here is 𝑝𝑝 =  𝑞𝑞. Another conver-
sion supplied is point RoundIntPoint(floatpoint p) that rounds up each 
coordinate rather than truncating it. 

For any floatpoint p, there are always two interesting points available, 
the underpoint and the overpoint. The underpoint of p is the point with 
each coordinate equal to the integer just less than or equal to—in the 
sense of the floor( ) function—the corresponding coordinate of p. Look-
ing at the real line oriented left to right with the positive reals increasing 
toward the right, this is the integer just left of (or equal to) the given 
coordinate. Similarly, the overpoint is the point with each coordinate 
equal to the integer just greater than or equal to it—in the sense of the 
ceil( ) function—that is, the integer just right of (or equal to) the coordi-
nate on the real line as just described. Meta-notation for these points are 
𝑝𝑝.𝑢𝑢𝑛𝑛𝑢𝑢𝑠𝑠𝑢𝑢 and 𝑝𝑝. 𝑜𝑜𝑜𝑜𝑠𝑠𝑢𝑢, or equivalently, ⌊𝑝𝑝⌋ and ⌈𝑝𝑝⌉. Altamira COMPOSER 
does not implement the methods for these, which might be, say, point 
UnderPoint(floatpoint p) and point OverPoint(floatpoint p). 
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The following arithmetic operators are defined for points. I give a 
meta-notation, the Altamira COMPOSER implementation method, and a 
C++ definition for each. Clearly, if Altamira COMPOSER had been im-
plemented in C++, handy use of overloaded operators could have been 
used,49 as indicated by the meta-notation. 

𝑝𝑝 +  𝑞𝑞 point AddPoint(point p, point q) + coordinate-wise 
𝑝𝑝 –  𝑞𝑞 point SubPoint(point p, point q) – coordinate-wise 

– 𝑝𝑝 point MinusPoint(point p) – coordinate-wise 
𝑝𝑝 % 𝑚𝑚𝑜𝑜𝑢𝑢 point ModPoint(point p, point mod) % coordinate-wise 
𝑝𝑝 ∗  𝑞𝑞 point MulPoint(point p, point q) * coordinate-wise 
𝑝𝑝 / 𝑞𝑞 point DivPoint(point p, point q) / coordinate-wise 

For floatpoints: 

𝑝𝑝 ∗  𝑞𝑞 floatpoint MulFloatPoint(floatpoint p, floatpoint q) * coordinate-wise 
𝑝𝑝 / 𝑞𝑞 floatpoint DivFloatPoint(floatpoint p, floatpoint q) / coordinate-wise 

A mask is defined to be an int with bits set to 0 or 1. 
We define a booleanpoint to be a point with boolean coordinates. 

There is an obvious casting allowed between booleanpoint and point. In 
Altamira COMPOSER we have elected to simply use a point with coordi-
nates values of 0 or 1 to represent a booleanpoint to avoid proliferation 
of types. 

An example of the use of a mask is the method int PointTo-
Mask(point p) that converts a point to a mask as follows: Bit 0 of the 
mask is set to 1 if 𝑝𝑝. 𝑥𝑥 is non-0, and bit 1 is set if 𝑝𝑝.𝑦𝑦 is non-0. This is 
particularly useful if p represents a booleanpoint. Conversely, point 
MaskToPoint(int m) converts a mask to a point (cf., booleanpoint). 

The following relational operators return booleanpoints: 

𝑝𝑝 ≡  𝑞𝑞 booleanpoint EQPoint(point p, point q) == coordinate-wise 
𝑝𝑝 ≠  𝑞𝑞 booleanpoint NEPoint(point p, point q) != coordinate-wise 
𝑝𝑝 <  𝑞𝑞 booleanpoint LTPoint(point p, point q) < coordinate-wise 
𝑝𝑝 ≤  𝑞𝑞 booleanpoint LEPoint(point p, point q) <= coordinate-wise 
𝑝𝑝 >  𝑞𝑞 booleanpoint GTPoint(point p, point q) > coordinate-wise 
𝑝𝑝 ≥  𝑞𝑞 booleanpoint GEPoint(point p, point q) >= coordinate-wise 
𝑚𝑚 ?  𝑝𝑝 ∶  𝑞𝑞 booleanpoint WherePoint(booleanpoint m, point p, ?: coordinate-wise 

                                                                 
49 I realize that such overloading is frowned upon, but I couldn’t resist it when I implemented an 
early version of ICEMAN. 
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point q) 

 
Boxes 

The most common support structure required in imaging is the box. 
Sometimes an entire image computation can be performed on its boxes 
alone, without ever referring to the actual pixel values of the image except 
for trivial data copying. See An Informative Example, page 59. 

The model provides two formal data objects for boxes, called box and 
floatbox, for boxes with integer and floating-point coordinates, respec-
tively. There are several ways to implement a box or floatbox. I shall not 
dictate an implementation but require that several characteristics of 
them should always be available. 

For example, a box (box or floatbox) has minmax variables. These are 
ints called xmin, xmax, ymin, ymax. They have the obvious meaning of the 
smallest and largest coordinate in each dimension represented by a box. 
Altamira COMPOSER has methods for retrieving minmax variables. For 
example, int BoxXMax(box b) returns xmax of b, or 𝑏𝑏. 𝑥𝑥𝑚𝑚𝑚𝑚𝑥𝑥 in meta-
notation. 

Every box has a minpoint and a maxpoint, that are the points (point or 
floatpoint) corresponding to (xmin, ymin) and (xmax, ymax), respectively. 
Altamira COMPOSER has methods, such as point BoxMaxPoint(box b), 
for retrieving these. 𝑏𝑏.𝑚𝑚𝑚𝑚𝑥𝑥 and 𝑏𝑏.𝑚𝑚𝑖𝑖𝑛𝑛 are the maxpoint and minpoint of 
box b in meta-notation, or equivalently, 𝑏𝑏� and 𝑏𝑏. 

Every box has a size that is a point. The definition of size differs for 
box and floatbox, however. The horizontal size of a box is 
𝑥𝑥𝑚𝑚𝑚𝑚𝑥𝑥 –  𝑥𝑥𝑚𝑚𝑖𝑖𝑛𝑛 +  1, but for a floatbox it is 𝑥𝑥𝑚𝑚𝑚𝑚𝑥𝑥 –  𝑥𝑥𝑚𝑚𝑖𝑖𝑛𝑛. The difference 
reflects the purpose of the two types. A box represents the support of an 
image. Its size is the number of pixels across and down the image sup-
ported. But a floatbox usually represents a geometrical rectangle, so its 
size is the actual real width and height of the rectangle represented. The 
pertinent Altamira COMPOSER methods here are point BoxSize(box b) 
and floatpoint FloatBoxSize(floatbox b). 𝑏𝑏. 𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠 is the size (point) of box 
b in meta-notation. 
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A box can be invalid—if its xmin is greater than its xmax or its ymin is 
greater than its ymax. So there is a method boolean ValidBox(box b) that 
determines box validity. For completeness, there would be a similar me-
thod for floatbox, but we never found a need for it in Altamira COM-

POSER.50 There is also the notion of invalidbox, a box guaranteed to be 
invalid. Notice that a box may have its minpoint equal to its maxpoint. 
This represents an image consisting of a single pixel. A floatbox b with 
𝑏𝑏.𝑚𝑚𝑖𝑖𝑛𝑛 ≡  𝑏𝑏.𝑚𝑚𝑚𝑚𝑥𝑥—that is, a “rectangle” consisting of a single point—is 
considered a valid rectangle. 

The equality of two boxes is determined with boolean EqualBox(box 
b, box c)51 that is true if b and c represent exactly the same set of pixels—
that is, have the same box. 

Boxes can be constructed in a variety of useful ways, summarized, for 
box, by the list of construction methods below. There is a similar list for 
floatbox. 

box BoxConstruct(int xmin, int xmax, int ymin, int ymax) 
box BoxOriginSize(point origin, point size) 
box BoxFromPoints(point p, point q) 
box BoxAbsFromPoints(point p, point q) 

The first two of these are self-explanatory. The third constructor 
creates a box that minimally includes p and q. So p and q must lie at ei-
ther end of a diagonal of the box, thinking of it as a rectangle. It is con-
venient to have meta-notation for the operator defined by this construc-
tor; it is 𝑝𝑝 ⊔  𝑞𝑞, and ⊔ is called the box operator.52 The fourth one assumes 
p and q are the minpoint and maxpoint, respectively, of the box con-
structed. In Altamira COMPOSER it can create an invalid box since no 
checking is done. 

                                                                 
50 In fact, very little functionality for floatpoints and floatboxs was implemented in Altamira COM-

POSER. We implemented just those methods we actually needed. 
51 Altamira COMPOSER actually implements many booleans as ints, but this is a minor implementa-
tion detail. 
52 The fact that this operator looks like a “boxy” version of the classic set union operator ∪ is not a 
coincidence. Note, however, that the box operator is not a set union but generally creates a set larger 
than the set union of its arguments. 
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A box has several extremal points, called corners. Its minpoint and 
maxpoint are two of these. Method point BoxCorner(box b, int mask) 
returns the corner of box b specified by the bitmask mask, where the low-
order bit represents the x dimension and the next-higher bit y. For ex-
ample, mask set to value b01 yields the upper right corner.53 Meta-
notation for this corner is 𝑏𝑏. 𝑐𝑐𝑜𝑜𝑢𝑢𝑛𝑛𝑠𝑠𝑢𝑢[𝑏𝑏01], or equivalently 𝑏𝑏. 𝑐𝑐𝑜𝑜𝑢𝑢𝑛𝑛𝑠𝑠𝑢𝑢[1]. 

The center of a box, thought of as a rectangle, is obtained with is ob-
tained with a method point BoxCenter(box b), which truncates, or 
floatpoint FloatBoxCenter(box b), which rounds. Meta-notation is 
𝑏𝑏. 𝑐𝑐𝑠𝑠𝑛𝑛𝑐𝑐𝑠𝑠𝑢𝑢. 

With every box is associated another called its basebox which is the 
box moved to the origin—so that its minpoint is the origin 0. This is 
𝑏𝑏. 𝑏𝑏𝑚𝑚𝑠𝑠𝑠𝑠 in meta-notation, and the Altamira COMPOSER method is box 
BaseBox(box b). The corresponding notion for floatbox was not imple-
mented. 

A box may be cast to a floatbox and vice versa. In Altamira COMPOS-

ER, the methods are box IntBox(floatbox b), which truncates, box 
RoundIntBox(floatbox b), which rounds, and floatbox FloatBox(box b), 
which does neither. 

Two very useful notions for floatboxs are those of innerbox and outer-
box. The innerbox of floatbox b is the box on the integers just inside or 
on the given box. The outerbox is the box on the integers just outside or 
on the given box. The Altamira COMPOSER methods are box Inner-
Box(floatbox b) and box OuterBox(floatbox b). In meta-notation, 
𝑏𝑏. 𝑖𝑖𝑛𝑛𝑛𝑛𝑠𝑠𝑢𝑢 and 𝑏𝑏. 𝑜𝑜𝑢𝑢𝑐𝑐𝑠𝑠𝑢𝑢 represent these two boxes, respectively, or equiva-
lently ⌊𝑏𝑏⌋ and ⌈𝑏𝑏⌉. In meta-notation, the definitions are 

⌊𝑏𝑏⌋ ≝  �𝑏𝑏�  ⊔  �𝑏𝑏�, or 𝑏𝑏. 𝑖𝑖𝑛𝑛𝑛𝑛𝑠𝑠𝑢𝑢 ≝ (𝑏𝑏.𝑚𝑚𝑖𝑖𝑛𝑛).𝑜𝑜𝑜𝑜𝑠𝑠𝑢𝑢 ⊔ (𝑏𝑏.𝑚𝑚𝑚𝑚𝑥𝑥).𝑢𝑢𝑛𝑛𝑢𝑢𝑠𝑠𝑢𝑢 
and 

⌈𝑏𝑏⌉  ≝  �𝑏𝑏� ⊔  �𝑏𝑏�, or 𝑏𝑏. 𝑜𝑜𝑢𝑢𝑐𝑐𝑠𝑠𝑢𝑢 ≝ (𝑏𝑏.𝑚𝑚𝑖𝑖𝑛𝑛).𝑢𝑢𝑛𝑛𝑢𝑢𝑠𝑠𝑢𝑢 ⊔ (𝑏𝑏.𝑚𝑚𝑚𝑚𝑥𝑥).𝑜𝑜𝑜𝑜𝑠𝑠𝑢𝑢. 
 

 

                                                                 
53 The “b” in “b01” indicates that the value “01” is expressed in binary notation. 
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Box Operators 

Two handy unary box operators are box TransposeBox(box b) and box 
RightRotateBox(box b). TransposeBox( ) swaps the horizontal and vertical 
sizes of a box while leaving the minpoint fixed. RightRotateBox( ) returns 
a box that is approximately what you would get if you thought of b as a 
rectangle and rotated it about its center. This is a good place to show the 
box algebra in action with the code for implementing RightRotateBox( ). 
This is the actual code from Altamira COMPOSER: 

box RightRotateBox(box b) { 
point ptoffset = SubPoint(BoxCenter(b), MinPoint(b)); 
point ptmin = SubPoint(BoxCenter(b), TransposePoint(ptoffset)); 
return BoxOriginSize(ptmin, TransposePoint(BoxSize(b))); 

} 

The set of binary box operators is given below: 

box IntersectBox(box b, box c) 
box UnionBox(box b, box c) 
box BoxPlusBox(box b, box c) 

IntersectBox( ) returns the box representing the geometric intersec-
tion of its two arguments, treated as geometric rectangles. The result can 
be an invalid box in the case of a complete miss—that is, the two boxes 
don’t intersect. The intersection a of box b and box c is computed in the 
x dimension by 

a.xmin = c.xmin < b.xmin ? b.xmin : c.xmin 
a.xmax = c.xmax > b.xmax ? b.xmax : c.xmax 

and similarly for y. Meta-notation for intersection is 𝑏𝑏 ⊓  𝑐𝑐, where ⊓ is 
called the intersection operator.54 Let 𝑤𝑤 ≡ 𝑏𝑏 ⊓  𝑐𝑐, then meta-notation lets us 
express the calculation above another way: The minimum of each dimen-
sion 𝑖𝑖 (𝑥𝑥 or 𝑦𝑦) is given by 

𝑤𝑤. 𝑖𝑖 ≡  max(𝑏𝑏. 𝑖𝑖, 𝑐𝑐. 𝑖𝑖) 

                                                                 
54 The fact that this operator looks like a “boxy” version of the classic set intersection operator ∩ is 
not a coincidence. 
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and the maximum by 

𝑤𝑤. 𝑖𝑖 ≡  𝑚𝑚𝑖𝑖𝑛𝑛(𝑏𝑏. 𝑖𝑖, 𝑐𝑐. 𝑖𝑖). 

The floatbox version of intersection was not implemented in Altamira 
COMPOSER. 

UnionBox( ) returns the minimal box enclosing the two box ope-
rands, meta-notation for which is 𝑏𝑏 ⊔  𝑐𝑐, using the box operator intro-
duced earlier for construction of a box from two points. This use is con-
sistent with the former if a point is taken to be a degenerate box. In me-
ta-notation let 𝑤𝑤 ≡ 𝑏𝑏 ⊔  𝑐𝑐 , then the calculation defining the union is,  
for each dimension 𝑖𝑖 (𝑥𝑥 or 𝑦𝑦): 

𝑤𝑤. 𝑖𝑖 ≡  min(𝑏𝑏. 𝑖𝑖, 𝑐𝑐. 𝑖𝑖) 
𝑤𝑤. 𝑖𝑖 ≡  𝑚𝑚𝑚𝑚𝑥𝑥(𝑏𝑏. 𝑖𝑖, 𝑐𝑐. 𝑖𝑖). 

The floatbox version was not implemented in Altamira COMPOSER. 
BoxPlusBox( ), or 𝑏𝑏 + 𝑐𝑐 in meta-notation, is defined by 

BoxFromPoints( AddPoint(MinPoint(b), MinPoint(c)), 
AddPoint(MaxPoint(b), MaxPoint(c))) 

or by 
𝑏𝑏 + 𝑐𝑐 ≝ �𝑏𝑏 + 𝑐𝑐�  ⊔  �𝑏𝑏 + 𝑐𝑐� 

in meta-notation. It is most useful and understandable when the minpoint 
of c is completely negative and the maxpoint is positive. Then the result is 
seen to be a box that one would get by taking the union of b with all poss-
ible positions of c such that the origin of c is in or on b. Another way to 
think of it in this case is that b is expanded by c. The floatbox version is 
defined similarly. 

The following boolean functions on boxes are defined: 

boolean BoxInBox(box b, box c) 

that returns true if b lies totally within c, both treated as rectangles. b may 
share an edge with c and still give true. Meta-notation is 𝑏𝑏 ⊆  𝑐𝑐. 

boolean PointInBox(point p, box b) 
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that returns true if p lies in or on b, treated as a rectangle. Meta-notation is 
𝑝𝑝 ⊆  𝑏𝑏. 

The following operators combine a box and a point: 

box BoxPlusPoint(box b, point p) 
box BoxMinusPoint(box b, point p) 
floatbox MulFloatBox(floatbox b, floatpoint p) 
box BoxExpand(box b, point p) 

BoxPlusPoint( ) offsets box b by point p. Meta-notation is 𝑏𝑏 +  𝑝𝑝. The 
definition in meta-notation is 

𝑏𝑏 +  𝑝𝑝 ≝  �𝑏𝑏 + 𝑝𝑝�  ⊔  �𝑏𝑏 + 𝑝𝑝�. 

The floatbox version is defined similarly. 
In general, an operator op between two points can be extended to a 

box b and a point p by the form 

𝑏𝑏 𝐨𝐨𝐨𝐨 𝑝𝑝 ≝  �𝑏𝑏 𝐨𝐨𝐨𝐨 𝑝𝑝�  ⊔  �𝑏𝑏 𝐨𝐨𝐨𝐨 𝑝𝑝� 

and to a box b and a box c by the form 

𝑏𝑏 𝐨𝐨𝐨𝐨 𝑐𝑐 ≝  �𝑏𝑏 𝐨𝐨𝐨𝐨 𝑐𝑐�  ⊔  �𝑏𝑏 𝐨𝐨𝐨𝐨 𝑐𝑐�. 

BoxMinusPoint( ), 𝑏𝑏 –  𝑝𝑝, is defined similarly to 𝑏𝑏 +  𝑝𝑝. The floatbox 
version was not implemented in Altamira COMPOSER. 

MulFloatBox( ), 𝑏𝑏 ∗  𝑝𝑝, is defined similarly. In this case, it was the box 
version that was not implemented. This routine is typically used to scale 
b by a size p. 

BoxExpand( ) returns a box expanded (or shrunk) by adding p to 
𝑏𝑏.𝑚𝑚𝑚𝑚𝑥𝑥 and subtracting it from 𝑏𝑏.𝑚𝑚𝑖𝑖𝑛𝑛. The floatbox version was not im-
plemented. 

A very useful method, NotBox( ), has this prototype in Altamira 
COMPOSER: 

int NotBox(box b, box B, box* top, box* bottom, box* left, box* right) 

that returns the complement of box b in (what is assumed to be) surround-
ing box B as four boxes: top and bottom are as wide as B; left and right are as 
high as b. The returned value is a 4-bit flag with one bit corresponding re-
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spectively to each returned box. Each bit is 1 if the corresponding box is 
valid. Note that NotBox( ) does not define a useful complement operator 
for boxes, because it does not return a box, but rather a set of boxes. 
 

Special Box Routines55 

After programming with an early version of the concepts at Pixar, I no-
ticed that I was solving the same two problems over and over again. This is 
described in detail in (Smith 1989). I invented two nonobvious functions 
that greatly eased this situation: 

boolean AlignSrcAndDstBoxesWithOffset(box s, box d, point p, box* S, 
box* D) 

This useful routine takes an arbitrary input source box and input des-
tination box (assumed to define source and destination subimages) and 
“aligns” them, where there may be an arbitrary offset between them. So 
the minpoints are aligned unless there is a nonzero offset, in which case 
the source box is aligned with its minpoint offset relative the minpoint 
of the destination box. The boxes and point must lie in the same coor-
dinate system. The output source and destination boxes define the mi-
nimally affected subimages of the images defined by the input boxes. 
They represent the intersection of the two input boxes and are thus the 
same size. They are, however, generally different boxes since they are 
subboxes of an arbitrary pair of input boxes. Let s and d be the input 
boxes and S and D be output boxes. Let p be the offset. Then, in meta-
notation mixed with some C-like code, the computation is (t is a tempo-
rary box variable): 

𝑐𝑐 =  (𝑢𝑢. 𝑏𝑏𝑚𝑚𝑠𝑠𝑠𝑠 –  𝑝𝑝)  ⊓  𝑠𝑠. 𝑏𝑏𝑚𝑚𝑠𝑠𝑠𝑠; 
if(!ValidBox(𝑐𝑐)) return false; 
∗ 𝑆𝑆 =  𝑐𝑐 +  𝑠𝑠.𝑚𝑚𝑖𝑖𝑛𝑛; 
∗ 𝐷𝐷 =  𝑐𝑐 +  𝑢𝑢.𝑚𝑚𝑖𝑖𝑛𝑛 +  𝑝𝑝; 
return true; 

                                                                 
55 This section may be skipped until after motivations for the two routines are established in the 
Image Assignment section, page 57, of the next chapter. 
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The other useful routine is: 

boolean AlignSrcAndDstSubBoxes(box s, box d, box b, box* S, box* D). 

Given two aligned boxes (as, for example, output by the routine above) 
and given a box b which intersects the input source box s of the two, de-
termine the intersection and the corresponding subbox of the input desti-
nation box d. Return these two subboxes, which are the same size, by defi-
nition. S and D are these two “aligned” subboxes of the given aligned box-
es. The routine returns true if the subboxes are valid else false. If false, 
then S and D are undefined. b must be in the same coordinate space as s. 
Let S and D be the aligned input boxes. Let s and d be the aligned output 
boxes, if any. Then the computation in meta-notation is: 

𝑐𝑐 =  𝑆𝑆 ⊓  𝑏𝑏; 
if(!ValidBox(𝑐𝑐)) return false; 
∗ 𝑆𝑆 =  𝑐𝑐; 
∗ 𝐷𝐷 =  𝑐𝑐 +  𝐷𝐷.𝑚𝑚𝑖𝑖𝑛𝑛 –  𝑆𝑆.𝑚𝑚𝑖𝑖𝑛𝑛; 
return true; 
 

The Algebraic Structure of Box Algebra56 

I have called the calculus of boxes a box algebra. What kind of algebra is 
it? When I set out to write this section, I thought I could derive an algebra 
of boxes that was complete in the sense of an algebraic field: (1) It was 
closed on two binary operators, which were each commutative and asso-
ciative, and which distributed over one another, and for each of which 
there existed an identity; and (2) there existed an inverse or complement 
for each operator. I will show (1) here, but not (2), a problem I will leave 
to the interested reader.57 

I will show that ⊔ and ⊓ have the right properties for the additive and 
multiplicative operators of an algebraic field, and identity elements for 
them will be defined. The algebraic structure derived is rich enough to 
                                                                 
56 This section can be skipped with no substantive loss to the presentation of the theory. It is in-
cluded for completeness. 
57 In an earlier version of this material, I defined the complement of a box to be the box obtained 
by swapping the minpoint and the maxpoint, interpreted as a box passing through infinity or 
around a toroidally connected space. Does this defintion work? 
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justify use of the term “algebra,” but I could find no important reason 
for implementing it fully as described in this section. 

Let the special emptybox be a box that represents enclosure of no 
space. Notice that a box could be empty in one dimension but not in 
another. Such a partially empty box is not emptybox. 

Let another special box, universalbox, represent enclosure of all of 
2D space. A box can be universal in one dimension but not another. 
Such a partially universal box is not universalbox. 

Both universalbox and emptybox are considered valid. A normal box 
is any valid box other than universalbox, emptybox, a partially universal 
box, or a partially empty box. I will just assume that the implementation 
of box allows for the two special cases, without specifying how it is ac-
tually done. universalbox and emptybox will be shown to be the identi-
ties for the ⊓ and ⊔ operators, respectively. 

The ⊔ operator, the box operator, is commutative. That is, 𝑏𝑏 ⊔  𝑐𝑐 ≡
 𝑐𝑐 ⊔  𝑏𝑏, for boxes 𝑏𝑏 and 𝑐𝑐, because finding minima and maxima is not 
dependent on argument order. It is also idempotent, 𝑏𝑏 ⊔  𝑏𝑏 ≡ 𝑏𝑏. 

The ⊓ operator is commutative by the same argument. Thus 𝑏𝑏 ⊓  𝑐𝑐 ≡
 𝑐𝑐 ⊓  𝑏𝑏. It is also idempotent: 𝑏𝑏 ⊓  𝑏𝑏 ≡  𝑏𝑏. 

The ⊔ operator can be shown to be associative. The definition of ⊔ 
applied to 𝑤𝑤 ≡  (𝑚𝑚 ⊔  𝑏𝑏)  ⊔  𝑐𝑐, for boxes 𝑤𝑤, 𝑚𝑚, 𝑏𝑏, and 𝑐𝑐, determines the 
minimum of each dimension 𝑖𝑖 (𝑥𝑥 or 𝑦𝑦) to be 

𝑤𝑤. 𝑖𝑖 ≡  min(min(𝑚𝑚. 𝑖𝑖, 𝑏𝑏. 𝑖𝑖), 𝑐𝑐. 𝑖𝑖) 

and the maximum to be 

𝑤𝑤. 𝑖𝑖 ≡  𝑚𝑚𝑚𝑚𝑥𝑥(𝑚𝑚𝑚𝑚𝑥𝑥(𝑚𝑚. 𝑖𝑖, 𝑏𝑏. 𝑖𝑖), 𝑐𝑐. 𝑖𝑖). 

Since min and max are associative, ⊔ is too. 
The ⊓ operator can also be shown to be associative. The definition of 

⊓ applied to 𝑤𝑤 ≡  (𝑚𝑚 ⊓  𝑏𝑏)  ⊓  𝑐𝑐, for boxes 𝑤𝑤, 𝑚𝑚, 𝑏𝑏, and 𝑐𝑐, determines the 
minimum of each dimension 𝑖𝑖 (𝑥𝑥 or 𝑦𝑦) to be 

𝑤𝑤. 𝑖𝑖 ≡  max(max(𝑚𝑚. 𝑖𝑖, 𝑏𝑏. 𝑖𝑖), 𝑐𝑐. 𝑖𝑖) 

and the maximum to be 
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𝑤𝑤. 𝑖𝑖 ≡  𝑚𝑚𝑖𝑖𝑛𝑛(𝑚𝑚𝑖𝑖𝑛𝑛(𝑚𝑚. 𝑖𝑖, 𝑏𝑏. 𝑖𝑖), 𝑐𝑐. 𝑖𝑖). 

Since min and max are associative, ⊓ is too. 
It can also be shown that ⊓ is distributive over ⊔. Let 𝑢𝑢 ≡  𝑚𝑚 ⊓  (𝑏𝑏 ⊔

 𝑐𝑐) and 𝑜𝑜 ≡  (𝑚𝑚 ⊓  𝑏𝑏)  ⊔  (𝑚𝑚 ⊓  𝑐𝑐). Then for each dimension 𝑖𝑖 (𝑥𝑥 or 𝑦𝑦), 

𝑢𝑢. 𝑖𝑖 ≡  max �𝑚𝑚. 𝑖𝑖, min� 𝑏𝑏. 𝑖𝑖, 𝑐𝑐. 𝑖𝑖�� 

𝑜𝑜. 𝑖𝑖 ≡  min �max�𝑚𝑚. 𝑖𝑖, 𝑏𝑏. 𝑖𝑖�, max� 𝑚𝑚. 𝑖𝑖, 𝑐𝑐. 𝑖𝑖��. 

Without loss of generality, assume 𝑏𝑏. 𝑖𝑖 <  𝑐𝑐. 𝑖𝑖. Then both 𝑢𝑢. 𝑖𝑖 and 𝑜𝑜. 𝑖𝑖 are 
max�𝑚𝑚. 𝑖𝑖, 𝑏𝑏. 𝑖𝑖�. A similar argument holds for 𝑢𝑢. 𝑖𝑖 and 𝑜𝑜. 𝑖𝑖, so 𝑢𝑢 ≡  𝑜𝑜. Simi-
larly, ⊔ can be shown to be distributive over ⊓. 

Finally, notice that 𝑏𝑏 ⊓ universalbox ≡  𝑏𝑏, and 𝑏𝑏 ⊔ emptybox ≡  𝑏𝑏, 
for any box 𝑏𝑏, so universalbox and emptybox are the identity elements 
for ⊓ and ⊔, respectively. 

I consider the baggage required for representing universalbox, emp-
tybox, a partially universal box, and a partially empty box not justified. 
emptybox could be used for a complete miss in box intersection, but 
invalidbox serves this purpose in the box algebra as implemented. 

I will continue to refer to the “box algebra,” knowing that we could, if 
necessary, extend it to the algebraic structure defined in this section, but 
not doing so for the reasons just given. 
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IMAGE ALGEBRA 
 

Image Algebra 

We come at last to the meat and potatoes of the theory: image computa-
tions. The purpose of this chapter is to extend the model to include pre-
cise descriptions of images and sprites, operations that can be performed 
on them, and—importantly—operations that can be performed between 
them. Just as the preceding chapter defined points and boxes and built up 
an algebra of operators on them for support calculations, this chapter de-
fines channels, pixels, and images and an algebra58 between them for im-
age calculations. Since each image has a support box by definition, box 
algebra concepts are integral to the image algebra developed here. That’s 
why we so carefully developed them in the last chapter. 
 

Channels 

As already discussed, a pixel in the model may have an arbitrary finite 
number of channels, where a pixel channel represents a single numerical 
sample of some continuum. Similarly, an image may have any number of 
channels. So the channel is a fundamental object in the model, which will 
be used to formally define pixels and images, hence sprites. 

One of the simplifications of the Altamira model is to allow only one 
channeltype per image (hence pixel). Mixtures of different channeltype are 
handled at a higher level.59 It is convenient to adopt for valid channel-
types those supported by a development environment. The model ab-
stracts these to the following example types that are intended to map na-
turally to common data types: 

untn intn floatn 

where n is the number of bits, typically 8, 16, 32, etc. This list is not meant 
to be exhaustive; it is extensible at will. unt stands for unsigned integer 

                                                                 
58 I do not attempt to extend this “algebra” to a mathematically complete one, as we did for the box 
algebra. I use the word simply for symmetry. 
59 This higher level is called the “imagestruct” level in Altamira COMPOSER. 
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and int for signed integer. A float represents a floating-point number. 
Practically, Altamira COMPOSER maps unt8 to C’s unsigned char and 
used this one type for almost every image, sprite, and pixel. The other 
types that Altamira COMPOSER at least recognizes are unt32, float32, and 
float64. 

The code, however, is written to handle unts of arbitrary typesize, 
measured in bytes. For example, unt8 has typesize 1. The Altamira 
COMPOSER implementation of the model provides the methods int 
ChannelSize(channel) and int ChannelType(channel) to access these 
basic characteristics of a channel. The former returns the byte count of 
the typesize of the given channel, and the latter returns an index into an 
enumeration of available channeltypes. 

The other fundamental characteristic of a channel object is the num-
ber of channels it contains. This is called its ply. Altamira COMPOSER 
provides method int ChannelPly(channel) for this important number. 

Given a channel ch, meta-notation ch.size, ch.type, and ch.ply represent 
the characteristics above. As will be seen, a channel is used to define an 
image (hence a sprite) and a pixel, so these objects will inherit the chan-
nel characteristics. The meta-notation is extended in the obvious way to 
I.size, I.type, and I.ply for image I and px.size, px.type, and px.ply for pixel 
px. Similarly Altamira COMPOSER provides corresponding methods with 
the names you might guess—for example, ImagePly( ) and PixelType( ). 

Finally, to completely define a channel, a permutation must be speci-
fied. This is a mapping of the channels to themselves. The default per-
mutation is the identity. Thus an image might have channels called R, 
G, B, and A as its natural order (identity permutation), but to inter-
change G and B channels, say, only the permutation would have to be 
changed. So data in an image or pixel channel is accessed via indirection 
through the channel permutation. 

Methods are assumed to exist for testing equality of channels and 
channeltypes. 
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Color 

It is not necessary to discuss color before defining pixels and images with 
more care, but the definition of RGBA sprite tells us that color is an im-
portant topic in that subset of the theory. So we discuss here the color ob-
jects that are used with sprites. 

There are two integer color objects, rgbcolor and rgbacolor, and two 
float color objects, rgbfloatcolor and rgbafloatcolor.60 rgb[a]color holds 
RGB[A] tuples as integers, and rgb[a]floatcolor holds RGB[A] tuples as 
reals. Meta-notation is straightforward. For example, rgbacolor rgba has 
R, G, B, and A components referred to as rgba.r, rgba.g, rgba.b, and rgba.a, 
respectively. There are methods in Altamira COMPOSER, of course, for 
setting and retrieving color components to and from colors. 

The semantics of these color tuples can be any 3D or 4D color de-
sired. For example, Altamira COMPOSER used rgbcolor objects to hold 
Hwb (Hue, whiteness, blackness) and HSV (Hue, Saturation, Value) re-
presentations of color (Smith & Lyons 1996). The point is, the color ob-
jects do not have to hold RGB color representations, despite the name. 
There are color space conversion methods for converting between RGB 
and Hwb and between RGB and HSV—for example, rgbcolor* 
HwbToRGB(rgbcolor* phwb).61 

These types can be converted to one another in the ways that you 
might suppose. rgb[a]color can be promoted directly to rgb[a]floatcolor. 
An example method in Altamira COMPOSER is rgbafloatcolor 
FloatRGBA(rgbacolor rgba). If an alpha value is required to complete a 
conversion, it must be provided as in rgbacolor RGBtoRGBA(rgbcolor 
rgb, int alpha). 

 rgb[a]floatcolor can be truncated or rounded to rgb[a]color. Example 
methods are rgbacolor IntRGBA(rgbafloatcolor rgba) and rgbacolor 
RoundIntRGBA(rgbafloatcolor rgba). 

 

                                                                 
60 Altamira COMPOSER actually uses names RGBColorType, RGBAColorType, RGBFloatColor-
type, and RGBAFloatColorType, respectively. 
61 These were not actually implemented in Altamira COMPOSER, but the app does contain the con-
versions indicated, in a different guise—that is, between pixels. 
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Pixels 

An object of obvious usefulness in image computing is the pixel, that 
holds all channels of one pixel of an image. A channel object and data for 
each channel defines a pixel. In Altamira COMPOSER, the constructor is 
pixel* PixelConstruct(int ply, int type, int* permute) that indirectly con-
structs a channel from the three arguments.62 

RGB and RGBA pixels are of special interest and utility in image 
computing. These are pixels that hold an RGB color without or with an 
alpha value, respectively. These are so handy that Altamira COMPOSER 
provides special constructors for them that essentially take a channel and 
an rgb[a]color and produce an appropriate pixel: pixel* 
RGB[A]PixelConstruct(int ply, int type, int* permute, rgb[a]color c). 

Pixels may be assigned to one another. In meta-notation px = qx for 
two pixels px and qx. This is straightforward if both pixels have the same 
channel structure. The general assignment has to interpret different 
channeltypes and different plys. The interpretation I have selected is 
this: channeltypes convert in the usual C-like ways. The channel struc-
ture of px, the receiving pixel, is unchanged by an assignment. If the ply 
of qx exceeds that of px, then the channelvalues of qx are simply assigned 
in order to the channelvalues of px. If the ply of px exceeds that of qx, 
then after the channels of qx are depleted, the remaining channels of px 
are assigned the last channelvalue of qx. This accomplishes the following: 
If qx is a single-ply pixel holding the single unt8 value 255, and px is a 3-
ply unt8 pixel, then px = qx puts a 255 in all three channels of px. Alta-
mira COMPOSER realizes this assignment with the routine void Pix-
el_Pixel(pixel* px, pixel* qx), read “pixel gets pixel.” 

Pixels can be converted to colors and vice versa—rgb = px, or px = rgb—
in meta-notation, for example, for rgbcolor rgb and pixel px, and similar-
ly for RGBA. Care must be taken for pixels without the natural ply of 
three for rgbcolor or four for rgbacolor. In the Altamira COMPOSER im-
plementation of the model, pixel* Pixel_RGBAColor(pixel* px, rgbaco-
lor rgba) simply returns NULL if px.ply is not equal to four. Otherwise the 
                                                                 
62 For clarity, I omit another argument CompStruct* pComp that Altamira COMPOSER threads 
through all routines. I do this as a general rule in this lecture. 
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assignment happens as would be expected. In the other direction, rgba-
color RGBAColor_Pixel(pixel* px) copies as many channelvalues as 
there are available, in order, to corresponding components of an rgbaco-
lor, and any remaining components are set to 0. Similarly for conversion 
between pixel and rgbcolor. 

Altamira COMPOSER provides a full set of color conversion routines 
that operate on pixels rather than colors. These include pixel* 
RgbToHwbPixel(pixel* px) and pixel* HwbToRgbPixel(pixel* px) for 
conversions to and from RGB and Hwb, and similarly for RGB and 
HSV. All these routines return an error of NULL if the ply of px is less 
than three. 

 
Images, Cards, and Sprites 

At last, we come to the most important object of all in image computing. 
In part 1, I defined the image as a rectilinear array of pixels. This is the 
conceptual model of the image. The actual implementation may be quite 
different. In other words, in true object-oriented fashion, the image object 
implementation is not dictated to be an array of pixel objects, but it could 
be.63 

There are two popular ways to implement an image consistent with 
the sprite theory model—layered or interleaved. The layered method allo-
cates image memory channel-wise, the interleaved method pixel-wise. It is 
important to understand, however, that the model does not dictate ei-
ther. In fact, there are numerous ways to represent an image, but these 
two classes of ways deserve further explication. 

It is easier to explain the different storage methods by referring to a 
concrete example. We use the RGBA image as an example, because it is 
of particular interest in computer graphics. An example of a layered me-
thod of representing an RGBA image allots separate pieces of memory to 
hold channel R, channel G, channel B, and channel A. Thus it main-
tains four pointers to the four pieces of memory. These four pieces of 
memory are conceived of as lying in register above one another in layers. 
                                                                 
63 I use image as the name of the object here to be consistent with Altamira COMPOSER. If I were to 
start from scratch I would use sprite as the name of the object. 
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The principal advantage of this method is the ease with which the ply of 
an image can be changed—from single channel rectilinear monochrome 
images to 64-channel, say, spectral band satellite images with one chan-
nel per spectral band filter. Another advantage is that the separate pieces 
of channel memory do not have to be contiguous. The disadvantage is 
the need for four pointers and their management. 

An example of an interleaved method would allocate one contiguous 
piece of memory that would hold R, G, B, and A of the first pixel, then 
R, G, B, and A of the second pixel and so forth. The principal advantage 
of this method is that all color components are available in the vicinity 
of a single pointer—within small fixed offsets. The disadvantage is the 
large block of continguous memory required, plus the inability to add or 
subtract channels without massive data movement. 

The image object of our model does care which of these, if either is 
adopted for actual implementation. The image could be implemented, 
for example, with virtual tiles and multiple resolutions. 

The image object constructor requires only a size and a channel ob-
ject. For example, in Altamira COMPOSER the image constructor is essen-
tially64 image* ImageConstruct(point size, channel* pch, int flag). The 
minpoint of an image is always [0][0] (but see the discussion of subimage 
below). The size of the image—meta-notation: I.size for image I—gives the 
width in the x coordinate and the height in the y. The type, ply, and 
mask of an image are inherited from its channelobject, I.channel in meta-
notation, as discussed in the preceding chapter. Likewise for the permu-
tation of the channel object. Meta-notations I.box, I.basebox, and 
I.minpoint represent the obvious information about image I. 

In the Altamira COMPOSER implementation, the flag argument to the 
constructor is used for a variety of things. For example, an image is by 
default a layered representation, but the flag may be used to make it in-
terleaved. It is also used to indicate whether an image with an alpha 
channel is to be interpreted to have premultiplied alpha or not (the de-
fault being premultiplied, of course). 

                                                                 
64 As before, the CompStruct* pComp object that is threaded throughout Altamira COMPOSER is not 
shown for succinctness of presentation. 
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Some useful mask methods are, in the Altamira COMPOSER imple-
mentation, booleanpixel* ImageMask(image* I), that returns a pixel 
representing I.mask, channel by channel, boolean ImageMaskDa-
ta(image* I, int ch), that returns the mask for the given channel of image 
I, and int ImageMaskInt(image* I), that returns a bitmask for all chan-
nels of I.  

The model has the notion of the emptyimage. The Altamira COM-

POSER implementation uses method image* EmptyImageConstruct(void) 
to construct emptyimage, which has no data and a size of zeropoint (0, 
0). It just simply exists. Since it must respond to all image methods, the 
Altamira COMPOSER implementation arbitrarily has it return a ply of 1, a 
type of unt8, and the identity permutation. Method boolean ValidI-
mage(image* I) checks to see if an image is the emptyimage or not. It is 
sufficient to check that the size is zeropoint. 

Another very useful special image is called a card. A card is a constant 
image object—an image with every pixel identical to all others and of ar-
bitrary size. It can therefore be represented very succinctly. The Altamira 
COMPOSER constructor is image* Card(pixel* px, int flag), where the 
given pixel defines the constant pixel. Method boolean Image-
Card(image* I) checks to see if an image is a card or not. 

An extremely interesting special case of an image object is the sprite. 
As defined in Chapter 1, a sprite is an RGBA image, where the alpha is 
assumed to be premultiplied—that is, the RGB color channels are as-
sumed each to have been premultiplied by the corresponding A in the 
alpha channel. For all practical purposes, the pixels with zero alpha can 
be considered simply to not exist. It is not necessary to allocate any sto-
rage for them, although it is still common to do so. There should be a 
method boolean ImageSprite(image* I) that checks to see if an image is a 
sprite or not. Altamira COMPOSER does not implement this nor the 
sprite explicitly although nearly all image objects in the application are 
sprites. 

Some methods intended more for (RGBA) sprites than general im-
ages follow: 
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boolean RGBAtPoint(image* I, point p, rgbacolor rgba) returns the 
RGB color at point p of sprite I. This routine returns false if p is not on 
or within I.box. It returns black—that is, (0,0,0)—if p is within I.box but is a 
clear (nonexistent) pixel. Altamira COMPOSER returns true in this case, 
but an implementation might choose to return false instead. Similarly 
boolean AlphaAtPoint(image* I, point p, rgbacolor rgba) returns the 
alpha A at the point. 

image* Card_RGBA(rgbcolor rgba) constructs a card sprite of the 
given color and alpha. 

A useful notion for an image object is that of its bounding box. This is 
the minimal bounding box that contains pixels unequal to a given pixel. 
Usually the given pixel is clear (all 0s) and the bounding box then deli-
neates those pixels that are “interesting”—that is, that have non-0 infor-
mation in them. In the case of sprites, all pixels outside the bounding 
box (bbox, for short, pronounced “bee-box”) may be discarded if memory 
space has been allocated for them. In Altamira COMPOSER the method is 
box ImageBoundingBox(image* I, pixel* px). The box returned is rela-
tive the box of the given image. It is invalidbox if all pixels equal the giv-
en pixel. 
 

Subimages and Subsprites 

A powerful notion of the model is that of subimage—and hence of subsprite. 
A subimage is an image that is a subset of another image. Thus a subimage 
is a rectilinear subset of the set of pixels in a given image. And a sprite is a 
rectilinearly bounded subset of pixels that are defined in a given sprite.65 
The important point is that a subimage (subsprite) is not separately allo-
cated memory. Its memory is that used by the parent image (sprite). A ma-
jor distinction is that its minpoint does not have to be zeropoint. A sub-
image is a way to focus attention within an image. But a subimage is an 
image so far as any image method is concerned. So, for example, a sub-
image may have subimages. A subimage is a child, of course, to its parent 
image or subimage. 
                                                                 
65 I believe the sprite version of everything I say about images is obvious so will cease spelling out its 
definition separately. 
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Our model always specifies the subimage of an image relative to the 
parent image. The Altamira COMPOSER method is image* Sub-
Image(image* I, box b). It works like this: First, an error (NULL for Alta-
mira COMPOSER) is returned if either I does not exist or b is invalid. 
Second, b is intersected with I.basebox to delineate the subimage pixels. 
In other words, b is cropped,66 if necessary, to the given image. Then a 
new image object is allocated that inherits most characteristics from the 
given image, but has the size of the given box (cropped, if necessary), is 
marked a subimage, and refers to the data in the parent image rather 
than allocating its own. Its minpoint is set to the parent’s minpoint plus 
the minpoint of the given box (again, cropped, if necessary). 

Since a subimage is an image, all pixel references in it are relative its 
upper left pixel. The only exception is its minpoint that is located abso-
lutely with respect to the image at the root of the hierarchy above it—that 
is, the image with the actual memory allocation for the pixels, called the 
progenitor. The reason for this exception is so that absolute coordinates 
can always be converted to relative coordinates or vice versa. The impor-
tant point is that the model uses relative references for subimages by default. 

A more general notion of subimage is also available in the model. It is 
called a plyimage to draw the distinction. It is just like a subimage with 
the addition of the ability to select a subset of the channels of the parent 
image. In other words, a plyimage is a subimage in depth as well as 
height and width. The Altamira COMPOSER method is image* PlyI-
mage(image* I, box b, channel* pch). The ply, mask, and permutation of 
the plyimage are taken from the given channel object. Care must be tak-
en to ensure that the permutation given to the plyimage is directly a 
permutation of the channels of the progenitor image. 

 

                                                                 
66 The word cropped is chosen carefully and is part of the model. The term clipped is reserved for 
geometric modification. So boxes are cropped, but rectangles are clipped. This terminology again is 
intended to remind us to separate the discrete from the continuous. 
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Image or Sprite Assignment 

The most fundamental image or sprite operator is assignment.67 I will care-
fully discuss what it means to assign one image to another in the sprite 
theory because the concepts involved apply to most other binary image 
operators and operations. 

First, I will give an example of what is not meant by image assignment. 
To copy one image to another is not image assignment because no pixels 
are copied. A copy of an image object is simply a copy of the (program-
ming) object. Thus it is really a special case of a subimage, where the sub-
image is the entire parent image. Both copies point to the same pixel da-
ta. Thus there are two names for the same image. The Altamira COM-

POSER method for this is void ImageCopy(image* Idst, image* Isrc). 
Image assignment will be denoted in meta-notation by 𝛼𝛼 = 𝐽𝐽 (“I gets 

J”) for two images I and J. In general, I and J have different size, ply, and 
type. The most general formulation of image assignment consists of 
three steps: Align, intersect, and assign. 

Alignment determines the mapping between array indices of the two 
images. By default, two images are assumed to have their minpoints 
aligned. This means that, by default, the upper left pixel of the source 
(sub)image is mapped to the upper left pixel of the destination 
(sub)image. Since subimages are images, I will omit the “(sub)” prefix 
from hereon. 

Intersection is the determination of the largest box of pixels shared by 
the two aligned images. This is computed, of course, by intersecting the 
two aligned image boxes. Alignment and intersection take into account 
the fact that two images are generally of different size. 

The two box routines referred to previously in the section Special Box 
Routines, page 44, encapsulate precisely the calculations necessary for 
these first two steps, hence their importance.  

Assignment is the transfer68 of pixels one-to-one from the source sub-
image defined by the intersection box to the destination subimage de-
                                                                 
67 I could say “image or sprite” everywhere but will succinctly use “image” henceforth and assume 
the reader can supply the “or sprite” versions. 
68 I use “transfer” here to avoid multiple uses of “assignment,” but a transfer of one pixel to 
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fined by that same box. By definition of intersection, there are exactly 
the same number of pixels in both, and the two subimages have the same 
size. Assignment must also take into account the fact that in general two 
images have different ply and type. It must also honor the permutation 
of the source image and any channel masking that may be in effect. 

In practice, alignment and intersection are accomplished with a box 
algebra computation—one of the two Special Box Routines—preceding 
the actual transfer with the assignment step. That is, in practice it is con-
venient to segment the general image assignment problem into two steps, 
a box algebra step for alignment and intersection, and an image algebra 
step for actual pixel manipulation. Thus, in the Altamira COMPOSER 
implementation of the model, the fundamental image assignment me-
thod is image* Image_J(image* I, image* J)—also read “I gets J”—that as-
signs image J to image I and returns image I or an error (NULL) in case of 
a problem. This routine assumes alignment and intersection have already 
been performed and hence, without checking, that the given two images 
are the same size. 

In general, the transfer of pixels must take into account that I and J 
might have different type and do appropriate conversions during the 
“transfer.” The Altamira COMPOSER implementation makes the simplify-
ing assumption that all images of interest have the same type across an 
assignment. That is, if a conversion is to be made it can be assumed to 
have already been made before invoking an assignment (or almost any 
other binary operation). Thus Image_J( ) further assumes I and J have 
the same type. 

The problems of different ply and masking across an assignment must 
be handled. The model has a simple solution for this: The channels of J 
are mapped in order to the channels of I, where ordering is determined 
by the permutation structures of the two images, and masked channels 
are simply ignored. If I has ply greater than J, then its excess channels are 
simply untouched in an assignment from J. If J has ply greater than I, 
then the assignment simply ceases when there are no more receiving 
channels in I. Once the channels are mapped to one another, then as-

                                                                                                                                                         
another is just ordinary pixel assignment. That is, a “transfer” leaves the source unchanged. 
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signment becomes as simple as it sounds: simple transfer of depth-aligned 
channel components from one image to the other. 

The generalization to arbitrary binary operator op is straightforward. 
Instead of doing a transfer between the depth-aligned channel compo-
nents, the operation denoted by op is performed. There is typically an 
assignment of the result of this operation to yet another image, but we 
already know what it means to do an assignment. The general meta-
notation is 𝛼𝛼 = 𝐽𝐽 op 𝐾𝐾. 

The generalization to 𝑛𝑛-ary operations, for arbitrary number 𝑛𝑛 of im-
ages, is likewise straightforward. In fact, 𝛼𝛼 = 𝐽𝐽 op 𝐾𝐾 is an example of a 
ternary operation. All 𝑛𝑛 images are aligned, intersected, and subimaged 
to make them the same size. Any conversions are made to make them 
the same type. Depth alignment is performed and the operation is per-
formed. Typically the last step in the operation is an assignment of the 
result to a destination image. In the following, several of the most often 
used operations—those that composite images under the control of yet 
other images—are explained fully. But first, an example emphasizing box 
algebra computations is presented. 

 
An Informative Example 

With the box algebra machinery and no more image algebra than we have 
presented so far, we can perform interesting image computations. Here is 
a good example. See if you can figure out how it works. This is essentially 
C code directly from Altamira COMPOSER, with certain simplifications to 
improve readability. 

image* Image_CycleI(image* I, point p) 
{ 

/* Cycle given image in place, p.x columns horizontally and 
* p.y rows vertically. p.x, p.y can be negative. The cycle is 
* circular—that is, columns or rows shifted off one side of 
* an image reappear on the opposite side, so no data is discarded. 
*/ 
box bxoffset, quadbox[4]; 
image *psubim, *Quad[4]; 
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int m; 
point c0, c1, Imaxpoint, mask, ptmaxbox, ptoffset, q; 
point OnePoint = PointConstruct(1, 1); 
 
if(EqualPoint(p, ZeroPoint)) 

return I; 
 

// Make offset modulo the image size 
p = ModPoint(p, ImageSize(I)); 

 
// Make all shifts positive 
p = WherePoint(LTPoint(p, ZeroPoint), 

AddPoint(p, ImageSize(I)), p); 
Imaxpoint = MaxPoint(BaseBox(ImageBox(I))); 
q = SubPoint(Imaxpoint, p); 

 
for(m = 0; m < 4; m++) { 

// Define four important subimages and save them 
mask = MaskToPoint(m); 

 
c0 = WherePoint(mask, AddPoint(q, OnePoint), q); 
if(PointToMask(GTPoint(c0, Imaxpoint))) { 

Quad[m] = EmptyImageConstruct( ); 
continue; 

} 
 
c1 = WherePoint(mask, Imaxpoint, ZeroPoint); 
quadbox[m] = BoxFromPoints(c0, c1); 

 
Quad[m] = ImageConstruct(BoxSize(quadbox[m]), 

ImageChannel(I), IMFLAG_NORMAL); 
 
psubim = SubImage(I, quadbox[m]); 
Image_J(Quad[m], psubim); 
ImageDestruct(psubim); 

} 
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// Restore subimages to new locations 
for(m = 0; m < 4; m++) { 

if(!ValidImage(Quad[m])) 
continue; 

ptoffset = MulPoint(p, MaskToPoint(~m)); 
ptmaxbox = AddPoint(ptoffset, 

MaxPoint(BaseBox(ImageBox(Quad[m])))); 
bxoffset = BoxFromPoints(ptoffset, ptmaxbox); 
psubim = SubImage(I, bxoffset); 
Image_J(psubim, Quad[m]); 
ImageDestruct(psubim); 

} 
 
for(m = 0; m < 4; m++) 

ImageDestruct(Quad[m]); 
 
return I; 

} 
 

Image Compositing Operators and “Expressions” 

As explained in detail in appendix B, the over operator of (Porter & Duff 
1984) is fundamental to sprite applications. It is implemented in Altamira 
COMPOSER by the general routine 

image* Image_ImAIpJ(image* I, image* J, image* A) 

read as “I gets I minus A times I plus J.” This routine assumes images I, J, 
and A are the same size and type, as previously explained, and returns im-
age I. If I and J are premultiplied images—that is, sprites—and if A is the 
alpha channel of J, then this routine implements 𝛼𝛼 = 𝐽𝐽 over 𝐾𝐾. Again, see 
appendix B for full details, including efficient programming approxima-
tions. 

The implementation of such a routine must take into account the 
problems mentioned in the preceding section: I, J, and A may have dif-
ferent ply. J or A might be an image card (it would not make sense for I 
to be a card). 
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Although the model does not require it, routines as fundamental as 
this one should probably be written to be interruptable and to return 
status information regularly during its execution. These desirable addi-
tions are useful so long as an image computation requires seconds or 
even minutes to execute on an image. This is still true today. Perhaps in 
a decade, general computing will be so fast as to obviate the need for 
them. Nearly all Altamira COMPOSER image computation routines are 
implemented with these features. 

Following is a list of sample imaging “expressions” implemented in 
Altamira COMPOSER. The first two are those already described above. In 
all cases, the routine returns its first image* argument, and the argu-
ments are the necessary images, as image*s, or other parameters as speci-
fied. 

Routine Name Interpretation 
Image_J 𝛼𝛼 =  𝐽𝐽 
Image_ImAIpJ 𝛼𝛼 =  𝛼𝛼 − 𝐴𝐴 ∗ 𝛼𝛼 + 𝐽𝐽  
Image_ImAIpAJ 𝛼𝛼 =  𝛼𝛼 − 𝐴𝐴 ∗ 𝛼𝛼 + 𝐴𝐴 ∗ 𝐽𝐽  
Image_ImBIpAJ 𝛼𝛼 =  𝛼𝛼 − 𝐵𝐵 ∗ 𝛼𝛼 + 𝐴𝐴 ∗ 𝐽𝐽  
Image_ImABIpAJ 𝛼𝛼 =  𝛼𝛼 − 𝐴𝐴 ∗ 𝐵𝐵 ∗ 𝛼𝛼 + 𝐴𝐴 ∗ 𝐽𝐽  
Image_ImBIpABJ 𝛼𝛼 =  𝛼𝛼 − 𝐵𝐵 ∗ 𝛼𝛼 + 𝐴𝐴 ∗ 𝐵𝐵 ∗ 𝐽𝐽  
Image_ImABIpABJ 𝛼𝛼 =  𝛼𝛼 − 𝐴𝐴 ∗ 𝐵𝐵 ∗ 𝛼𝛼 + 𝐴𝐴 ∗ 𝐵𝐵 ∗ 𝐽𝐽  
Image_ImCBIpCAJ 𝛼𝛼 =  𝛼𝛼 − 𝐶𝐶 ∗ 𝐵𝐵 ∗ 𝛼𝛼 + 𝐶𝐶 ∗ 𝐴𝐴 ∗ 𝐽𝐽  
Image_JmCBJpCAK 𝛼𝛼 =  𝐽𝐽 − 𝐶𝐶 ∗ 𝐵𝐵 ∗ 𝐽𝐽 + 𝐶𝐶 ∗ 𝐵𝐵 ∗ 𝐾𝐾  
Image_ImCDBIpCDAJ 𝛼𝛼 =  𝛼𝛼 − 𝐶𝐶 ∗ 𝐷𝐷 ∗ 𝐵𝐵 ∗ 𝛼𝛼 + 𝐶𝐶 ∗ 𝐷𝐷 ∗ 𝐴𝐴 ∗ 𝐽𝐽  
Image_AI 𝛼𝛼 = 𝛼𝛼 ∗ 𝐴𝐴  
Image_CDJ 𝛼𝛼 = 𝐶𝐶 ∗ 𝐷𝐷 ∗ 𝐽𝐽  
Image_ImOIpOJ 𝛼𝛼 = 𝛼𝛼 − 𝑂𝑂 ∗ 𝛼𝛼 + 𝑂𝑂 ∗ 𝐽𝐽, float opacity 𝑂𝑂 
Image_ImAOIpOJ 𝛼𝛼 = 𝛼𝛼 − 𝐴𝐴 ∗ 𝑂𝑂 ∗ 𝛼𝛼 + 𝑂𝑂 ∗ 𝐽𝐽, float opacity 𝑂𝑂 
Image_ImAOIpAOJ 𝛼𝛼 = 𝛼𝛼 − 𝐴𝐴 ∗ 𝑂𝑂 ∗ 𝛼𝛼 + 𝐴𝐴 ∗ 𝑂𝑂 ∗ 𝐽𝐽, float opacity 𝑂𝑂 
Image_MaxJK 𝛼𝛼 = max(𝐽𝐽,𝐾𝐾)  
Image_ImJ 𝛼𝛼 =  𝛼𝛼 − 𝐽𝐽  
Image_IdivA 𝛼𝛼 = 𝛼𝛼/𝐴𝐴  
Image_SI 𝛼𝛼 = 𝛼𝛼 ∗ 𝑆𝑆, double scalar 𝑆𝑆 

It is not hard to imagine implementing a language with expressions 
such as these. Pixar’s ICEMAN is such a language, and I had great fun 
implementing a version in C++ happily overloading the C operators to 
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implement the languages operators.69 Altamira COMPOSER does not im-
plement a language. We opted instead to implement the common “ex-
pressions” above, plus a handful more, as highly optimized routines and 
found that this was sufficient for our purposes. In fact, many of these 
turned out to be superfluous (Smith 1996) in the sense that they were 
only ever used for a single purpose and were not therefore of general in-
terest. 

 
Image Functions 

The “expressions” above are important image functions, but the list of 
possible functions is infinite. The field of image computation is as large as 
that of computation. In this section we categorize image functions as an 
aid to understanding them. The implementations of these ultimately use 
some of the “expressions” above. The following taxonomy is based on 
what a function does, rather than how it does it. 

Spatial transformations—transforms, for short. These are resampling 
functions (see Continuous Operators on Discrete Sprites, page 29, and 
Figure 2) that perform geometric spatial operations on a continuous ob-
ject reconstructed from an image using the Sampling Theorem. These 
include the familiar scale, rotate, skew, and perspective transforms. Also 
included is bilinear warping, which maps an image reconstructed into an 
object with a rectangular bounding box, onto an arbitrary convex quadri-
lateral before resampling. All of these transforms can be mathematically 
represented with a 4x4 matrix, and they can be arbitrarily applied in any 
order. Since there is a small loss of information at each application of a 
spatial transform (because we cannot practically use the ideal, infinite 
reconstruction filter required by the Sampling Theorem), it is important 
not to literally concatenate transforms. Rather, an original source image 
is maintained; a 4x4 matrix representing the mathematical concatena-
tion of other 4x4 matrices is constructed; the resulting matrix is applied 

                                                                 
69 Not surprisingly, I overloaded ~, &&, and || to implement ¬, ⊓, and ⊔, respectively. As already 
mentioned, one version of this language I called VAIL, for Volume And Imaging Language. 
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to the source image so that there is only ever a single generation of loss 
allowed. 

Permutations—permutes, for short. The permutes change the order of 
the pixels within an image but create no new pixels as do resampling 
functions. There is no loss of information in a permutation. The per-
mutes include flipping an image up-to-down and right-to-left, transposing 
the pixels of an image about either of its diagonals, rotations (without 
resampling) clockwise or counterclockwise by exactly 90 degrees, and cyc-
lic shift of the image horizontally or vertically. 

Warps. This is a large class of resampling functions. Unlike the spa-
tial transforms, however, repeated application causes deterioration of an 
image. Included among the warps are barrel and bow distortions, famili-
ar to the video world, and so-called morphing. 

Enhancements. These include the classic image processing functions 
such as brightness and contrast adjustment, tone control, hue and satu-
ration shifts, color balancing, softening, sharpening, and so on. In gen-
eral, these functions adjust pixel contents without actually changing the 
pictorial content of an image, the position of its pixels, or its shape. 

Textures. These important functions capture the notion of texturing70 
one image by the contents of another. So the textures always require two 
sprites, a source and destination sprite. In the simplest case, color pixels 
from the source are simply copied to the aligned pixels in the destina-
tion. In a slightly more complete implementation, colors and transparen-
cies are copied to the destination from the source. In both these cases, 
the result has the shape essentially of the destination (although in the 
latter case, the shape can be modified somewhat by transparencies from 
the source sprite). The shape of the result can only be less than or equal 
that of the destination. In another variation, the sprites are glued togeth-
er: Clear pixels in the destination can be modified by source pixels, with-
in the bounding box of the destination. Another interesting member of 
this family of functions is snip: The shape pixels of the destination sprite 

                                                                 
70 I borrowed this term from 3D computer graphics, where it means that an image is used to give 
detail to the surface of a 3D geometrical object. Here we use it to mean that a sprite is used to give 
detail to the “surface” of a(nother) 2D sprite. 
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are erased (cleared, set to 0s) by the overlapping shape pixels of the 
source. A powerful subclass of texture functions are the mapping func-
tions. For example, transparency map alters the transparencies of the des-
tination image by the intensities of the color pixels of the source; the 
destination pixel becomes more transparent where the corresponding 
source pixel is dimmer. There are many possible variations on this 
theme. I am surprised how underemployed this powerful class of func-
tions is. 

Touchup. This is a large class of functions that can be thought of as 
simply the hand-driven version of any image computation. For example, 
so-called “painting” is a touchup function. It is the hand-driven version 
of a function that simply copies a card to a sprite. If the source is a rela-
tively small image, called a brush, and if the position of the brush image 
relative the destination sprite is determined interactively, say with a 
mouse or tablet stylus, then we have painting. More accurately, the brush 
is an alpha image that controls how a card is copied to a destination 
sprite. I call this class of functions touchup, rather than paint, because 
the simulation of painting is only one possible hand-driven function. 
Another is smearing of the image in the direction of brush movement. 
Another is simple transfer of pixels from one sprite to another under 
control of the brush as a third, controlling image. If the source pixels 
always remain constant, then this is called cloning. Erasing is the hand-
driven version of snipping described above in the textures. There are 
many possible variations here as well. An extreme is demonstrated in 
Altamira COMPOSER, where many of the warps can be applied to an im-
age under the handheld brush. 

Creation. This class of functions is used to generate new sprites, ei-
ther from scratch or by deconstructing existing sprites and images. A very 
popular way of creating sprites is to render them from a 2D or 3D geo-
metrical representation. This automatically generates an accurate and 
appropriate alpha channel for the resulting sprite. Altamira COMPOSER 
includes some very simple tools for doing this. These are tools for model-
ing ellipses, rectangles, splines, and polygons and then rendering them 
into colored images. I reemphasize that it is the renderings of these 2D 
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geometrical models that determines shape, not the geometry itself. The 
geometrical models can be rendered directly into solid color sprites, can 
be used to snip a given sprite, or can be used to extract pixels from a giv-
en sprite by a texturing operation. You can think of this last variation as 
using the geometrically-derived shape as a “cookie cutter” to extract a 
new sprite from an older one. Text is another powerful way to create 
shapes—for example, True Type or PostScript defined text is rendered 
into shapes that can be used just as the simple geometrically defined 
ones above are. Another popular method for sprite creation is called col-
or lifting.71 This defines a new sprite shape to be those pixels in a given 
sprite with colors equal to (or near) a given color. Then the correspond-
ing pixels of the source sprite are “lifted” into the new sprite at those lo-
cations. 

Rather than continuing to list functions, you can get an idea of the 
breadth of functionality available by looking at Altamira COMPOSER, of 
course, but also at any popular image editing application, such as Adobe 
PHOTOSHOP. Both these applications offer hundreds of functions. In the 
next section we go the next step beyond single sprites and image editing 
to multiple sprites and image composition, territory pioneered by Alta-
mira COMPOSER. 

 
Image Composition 

In the bad old days, an image required an expensive piece of memory for 
storage. So an image connoted large and expensive. If there were enough 
memory to hold an image, then a user did things to it, passed filters over 
it, painted on it, etc. I call this the monolithic model of image computing—
an image as a single large, heavy stone. Most imaging applications in the 
market today are still built on the monolithic conception—Adobe PHOTO-

SHOP being the best known. This is to be contrasted with the new mental 
model that is now appropriate. I could coin a term and call it the polylithic 
model but I think the idea is better carried by simply thinking of a stack of 
brightly colored pebbles—small, light, and numerous—that can be rear-

                                                                 
71 Often called, for no meaningful reason, “magic wand.” I will use a meaningful term. 
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ranged at will. Then, in addition to the image editing functions of yore (the 
monolithic era) are all the functions needed for arrangement of mutiple 
images—sprites as we are calling these nimble things. Thus image editing 
graduates into image composition. Thus an image composition application 
can be thought of as a tool for creating arrangements, or compositions, of 
sprites, with a full image editor available for each sprite. You will not be 
surprised to learn that Altamira COMPOSER was the first such application. 

So in this section, I extend our model to include compositions of 
sprites and functions for working with compositions. I will borrow heavi-
ly from an existing class of picture composition tools in the computer 
software market for our model. This is the class of geometry-based appli-
cations called drawing, or illustration, programs. In a drawing program, a 
user works in a creative space (see Creative Space vs Display Space, page 
15) that is 2D and infinite in all directions. Objects are placed in this 
space arbitrarily. For example, a triangle here, a cylinder there, and a 
sphere between them. These objects are, of course, geometrical objects, 
not sprites. 

Our model is exactly the same as that for the drawing programs but 
with sprites (image objects) substituted for geometry objects. This very 
simple, picture-based idea has been passed up for years in the imaging 
world, which still insists on using a much less appropriate text-based me-
taphor that assumes everything is pasted down into a single (monolithic) 
object and unpasted only temporarily when “selected.” Old selections are 
lost and have to be re-extracted for future use. Adobe PHOTOSHOP is the 
classic example of this paradigm (although introduction of “layers” alle-
viated this restriction somewhat). 

Let’s look further at the drawing metaphor that we shall adopt in our 
model. There is nothing behind the geometrical objects in the creative 
space. In a display of the creative space, something has to be displayed 
behind them. It is the so-called “desktop.” It is just whatever is back 
there. When printed to paper, the white paper shows there. This is 
called the abyss in our model.72 The abyss, or desktop, is not printed. It is 
not part of the creation. One unfortunate legacy of the monolithic era is 

                                                                 
72 I have also called this the void, which I like as an alternative. 
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the notion that images are always rectilinear and that, therefore, there is 
always a background image “back there.” In the sprite theory model, 
there is no need for a background image. One can always designate a 
given sprite or sprites to be the “background” but this is only convenient 
sometimes for naming and not part of the model. When printing a 
composition of sprites, the abyss conceptually doesn’t print.73 Just as the 
geometrical drawing applications have always not printed the desktop. 

Another unfortunate legacy of the monolithic era is the notion that 
images have edges. In particular, the edges of the rectilinear background 
image define the extent of a “composition.” If a “selection” is dragged 
past the edge of the background, it is automatically cropped to that 
edge.74 In our model, there are no edges to a composition in creative 
space. Any edges are an artifact of the decision about which part of a 
composition is to be displayed in display space. It is still usually true that 
displays (monitors, film frames, video frames, photographs, pieces of pa-
per) tend to be rectilinear. The point is that this restriction does not 
have to be invoked until a display space decision is made. Again, this is 
exactly how creation and display are divided from one another in geome-
try applications. In summary, in our model, cropping and pasting only 
happen at the last step, and only when instructed to do so by the us-
er/creator. 

Functions that we borrow directly from the geometrical forebears are 
depth ordering, alignment, and multiple selection. See any geometry 
program for how these work. By the way, “selection” becomes, in this 
model, simply pointing to a sprite—say, by clicking on it—just as in the 
geometry programs. Since objects are not pasted together, they are always 
available with a simple click. 

There are two notions of sets of sprites in the model: There are mul-
tiple selections of sprites, and there are groups of sprites. A multiple selec-
tion is a set of sprites that are treated as individuals. Thus a rotate-about-
                                                                 
73 Of course, real printers don’t composite their inks with the paper so the print function has to 
accommodate the color or image of the page being printed on. But this is an output or display prob-
lem, separated conceptually from the creative step. 
74 This is the acid test of an application to see if it has graduated out of the Monolithic Age. Try it 
on your favorite imaging app and see what happens. 
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center function applied to a multiple selection causes each sprite in the 
set to rotate individually about its center. A group, on the other hand, is 
a set of sprites treated as if they constituted a single sprite. The same ro-
tate function applied to a group would rotate the entire set around the 
center of the single “meta-sprite.” There can be groups of groups but not 
multiple selections of multiple selections. That is, a group can have hie-
rarchical structure, but a multiple selection cannot. 

 
Image Composition Display 

The sprite model celebrates the notion that the creation of a composition 
and the display of it are two separate processes (cf., page 15). Many of the 
features outlined above for image composition are performed by a design-
er interacting with the display of the composition. The sprites themselves 
reside in unknown and arbitrary locations in a computer or network. The 
actual pasting of the sprites together to form a final composite is the last 
process performed by the designer when the design is known to be com-
plete. It is called flattening. But the display of a composition appears to 
paste them together at all times. It is this fiction that makes the app work, 
because it appears to the user that all the sprites are actually in one space, 
as designed. 

Altamira COMPOSER borrows yet another notion from the geometric-
al modeling world. It lets the user have multiple views of a composition. 
Notice that this is just like having multiple cameras looking at a 3D syn-
thetic scene in classic computer graphics. Of course, this is just a res-
tatement of the creative vs display space notion. The important point is 
that each view, or display, must be recomputed every time a change is 
made to the composition. A recomposite of all visible sprites must occur 
for each view. Just keep in mind that this is for display only. The official 
flattening happens only under user directive, presumably as a last step, 
because it is difficult if not impossible to reverse (and why we argue 
against the old text-based paradigm that forces one to do exactly that). 

So the rapid composition and recomposition of sprites is fundamen-
tal to a pleasing display of an image composition application. In our 
model, the current sprite is the one that an indicated operation happens to 
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(or current sprites in case of a multiple selection). It can be at any level in 
the depth ordering of the composition. A good composition algorithm 
must take this into account. A tour de force example of the use of box 
algebra and the over image composition operator is presented in detail 
in (Smith 1990). I will not present the details here. Suffice it to say that 
the algorithm presented there seeks to minimize the number of pixels 
that actually have to be touched to do a recomposite, and this requires 
taking careful note of depth information. 

 
Sprite Picking 

One of the problems I had to solve that may not seem to be a problem is 
that of picking a particular sprite in a display of sometimes dozens or even 
hundreds or thousands of partially overlapping, partially transparent 
sprites. How does one do it? I tried several different schemes before hitting 
on the one described in detail in (Smith 1990) and adopted into our 
model. 

The basic notion is that when there is no ambiguity, then a click with-
in the bounding box of a sprite is sufficient to select, or pick, it. This is 
true even if the sprite is mostly clear and you click on the abyss. Thus 
you can be sloppy in your picking if there is no ambiguity. If you click on 
the abyss and are not within the bounding box of any sprite, then you 
simply miss. 

In the case of ambiguity, the topmost pixel with non-0 alpha that you 
touch picks the corresponding sprite. Thus it is the shape of a sprite that 
is used to determine if picking has occurred. A way to say this is: If you 
can see it, you can pick it—so long as you understand that seeing through a 
partially transparent object does not count. The partially transparent ob-
ject would be picked instead. 

If you click on a stack of sprites, but on an abyss pixel showing 
through them all, then it is the bottom sprite you get, assuming the click 
is inside its bounding box. 

This picking scheme has worked very well, so well—so intuitively—that 
it is a surprise perhaps to discover that it had to be invented, and that 
imaging applications don’t use it. 
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Future Directions 

I indicated earlier that once we clearly understand 2D imaging then we 
can proceed to integrate it with 2D geometry. I would like to discuss this 
again now that we have the full machinery of our model at hand. The im-
portant point is that the old monolithic model did not lend itself to an 
integration with geometry, but the polylithic, sprite theory model does. 
The careful separation of geometry and sampling makes the convergence 
easier because we know exactly what we are doing. 

So the future looks like this: 2D geometric objects are added to com-
positions of 2D sprites (sampled objects). Since they are both objects and 
both displayed in image space, this is straightforward. What has to be 
added are definitions of interactions between such objects. For example, 
what does it mean to paint on a 2D geometrical object? What does it 
mean to glue a geometric object to an image object? What does it mean 
to blur a geometric object. And so forth. I believe that the answers to 
these questions are generally straightforward, once we have the common 
space in which to speak of them and are careful of the distinctions be-
tween them. 

Then why not add 3D geometry (or even 3D sampling) objects? Sure. 
And then sound? Again, sure. And animation and interaction? Sure. In 
the common space advocated here the digital convergence is easy to vi-
sualize. 
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APPENDIXES 
 

A: A PIXEL IS NOT A LITTLE SQUARE, A PIXEL IS 

NOT A LITTLE SQUARE, A PIXEL IS NOT A LITTLE 

SQUARE! (AND A VOXEL IS NOT A LITTLE CUBE)75 
 

ABSTRACT 

My purpose here is to, once and for all, rid the world of the misconcep-
tion that a pixel is a little geometric square. This is not a religious issue. 
This is an issue that strikes right at the root of correct image (sprite) com-
puting and the ability to correctly integrate (converge) the discrete and the 
continuous. The little square model is simply incorrect. It harms. It gets in 
the way. If you find yourself thinking that a pixel is a little square, please 
read this paper. I will have succeeded if you at least understand that you 
are using the model and why it is permissible in your case to do so (is it?). 

Everything I say about little squares and pixels in the 2D case applies 
equally well to little cubes and voxels in 3D. The generalization is 
straightforward, so I won’t mention it from hereon.76 

I discuss why the little square model continues to dominate our collec-
tive minds. I show why it is wrong in general. I show when it is appropri-
ate to use a little square in the context of a pixel. I propose a discrete to 
continuous mapping—because this is where the problem arises—that al-
ways works and does not assume too much. 

I presented some of this argument in (Smith 1995b) but have en-
countered a serious enough misuse of the little square model since I 
wrote that paper to make me believe a full frontal attack is necessary. 

                                                                 
75 This is (Smith 1995c), originally written July 17, 1995. 
76 I added the “voxel” phrase to the title on Nov. 11, 1996, after attending the Visible Human 
Project Conference 96 in Bethesda, Md, where I heard “voxel” misused as a little cube many times. 
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THE LITTLE SQUARE MODEL 

The little square model pretends to represent a pixel (picture element) as a 
geometric square.77 Thus pixel (𝑖𝑖, 𝑗𝑗) is assumed to correspond to the area 
of the plane bounded by the square {(𝑥𝑥,𝑦𝑦)|𝑖𝑖 − .5 ≤ 𝑥𝑥 ≤ 𝑖𝑖 + .5, 𝑗𝑗 − .5 ≤
𝑦𝑦 ≤ 𝑗𝑗 + .5}. 

I have already, with this simple definition, entered the territory of 
controversy—a misguided (or at least irrelevant) controversy as I will at-
tempt to show. There is typically an argument about whether the pixel 
“center” lies on the integers or the half-integers. The “half-integerists” 
would have pixel (𝑖𝑖, 𝑗𝑗) correspond instead to the area of the plane 
{(𝑥𝑥,𝑦𝑦)|𝑖𝑖 ≤ 𝑥𝑥 ≤ 𝑖𝑖 + 1. , 𝑗𝑗 ≤ 𝑦𝑦 ≤ 𝑗𝑗 + 1. }. 

This model is hidden sometimes under terminology such as the fol-
lowing—the case that prompted this memo, in fact: The resolution-
independent coordinate system for an image is {(𝑥𝑥,𝑦𝑦)|0.≤ 𝑥𝑥 ≤
𝑊𝑊/𝐻𝐻, 0.≤ 𝑦𝑦 ≤ 1. }, where 𝑊𝑊 and 𝐻𝐻 are the width and height of the im-
age. The resolution dependent coordinate system places the edges of the 
pixels on the integers, their centers on the edges plus one half, the upper 
left corner on (0. ,0. ), the upper right on (𝑊𝑊, 0. ), and the lower left on 
(0. ,𝐻𝐻). See the little squares? They would have edges and centers by this 
formulation. 

SO WHAT IS A PIXEL? 

A pixel is a point sample. It exists only at a point. For a color picture, a pix-
el might actually contain three samples, one for each primary color contri-
buting to the picture at the sampling point. We can still think of this as a 
point sample of a color. But we cannot think of a pixel as a square—or any-
thing other than a point. There are cases where the contributions to a pixel 
can be modeled, in a low-order way, by a little square, but not ever the 
pixel itself. 

An image is a rectilinear array of point samples (pixels). The marvel-
ous Sampling Theorem tells us that we can reconstruct a continuous ent-

                                                                 
77 In general, a little rectangle, but I will normalize to the little square here. The little rectangle mod-
el is the same mistake. 
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ity from such a discrete entity using an appropriate reconstruction filter.78 
Figure 2 illustrates how an image is reconstructed with a reconstruction 
filter into a continuous entity. The filter used here could be, for exam-
ple, a truncated Gaussian. To simplify this image, I use only the footprint 
of the filter and of the reconstructed picture. The footprint is the area 
under the non-0 parts of the filter or picture. It is often convenient to 
draw the minimal enclosing rectangle for footprints. They are simply eas-
ier to draw than the footprint—Figure 2(d). I have drawn the minimal 
rectangles as dotted rectangles in Figure 2. 

Figure 3 is the same image reconstructed with a better reconstruction 
filter—for example, a cubic filter or a windowed sinc function—and not 
an unusual one at all. Most quality imaging uses filters of this variety. 
The important point is that both of these figures illustrate valid image 
computations. In neither case is the footprint rectangular. In neither 
case is the pixel ever approximated by a little square. If a shape were to be 
associated with a pixel (and I am not arguing that it should), then the 
most natural thing would be the shape of the footprint of the recon-
struction filter. As these two examples show, the filters typically overlap a 
great deal. 

Figure 4 is the same image reconstructed with one of the poorest re-
construction filters—a box filter. The only thing poorer is no reconstruc-
tion at all—resulting in the abominable “jaggies” of the early days of 
computer graphics—and we will not even further consider this possibility. 
The Figure 4 reconstruction too is a valid image computation, even 
though it is lacking in quality. This lowest-quality case is the only one 
that suggests the little square model. 

So it should be clear that the coordinate system definition given 
above is not suitable for anything but the lowest-quality image compu-
ting. The edges of a reconstructed image are most naturally defined to be 
its minimally enclosing rectangle. But these are dependent on the chosen 
reconstruction filter. 

The only resolution independent coordinate system that one can safe-
ly map to an image requires a known reconstruction filter. Given an im-

                                                                 
78 And some assumptions about smoothness that we do not need to worry about here. 
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age, say that represented by Figure 3(a), and a known filter, say that of 
Figure 3(b), then I can determine exactly what the minimally enclosing 
rectangle is and map this to the normalized rectangle of the proposed 
definition above: {(𝑥𝑥,𝑦𝑦)|0.≤ 𝑥𝑥 ≤ 𝑊𝑊/𝐻𝐻, 0.≤ 𝑦𝑦 ≤ 1. }. Then the pixel 
(point sample, remember) locations can be backed out of the mapping. 
Will they sit on the half-integers? In the three cases above, all of which 
are valid, only Figure 4 (the worst) will have the samples on the half-
integers under this mapping. Will the left edge of the reconstructed im-
age lie distance .5 left of the leftmost column of pixels? Again, only in 
the worst case, Figure 4. 

I would suggest at this point that the only thing that is fixed, in gen-
eral, are the samples. Doesn’t it make sense that they be mapped to the 
integers since that is so simple to do? Then the edges of the recon-
structed continuum float depending on the chosen filter. I believe that if 
you rid yourself of the little square model, it does not even occur to you 
to put the samples on the half-integers, an awkward position for all but 
the lowly box filter. The bicubic filter that I most often use has a foot-
print like the minimal enclosing rectangle of Figure 3(b). Half-integer 
locations for this filter are simply awkward. Certainly one can do it, but 
why the extra work? 

I believe that the half-integer locations are attractive for “little-
squarists” because the minpoint (upper left corner) of the reconstructed 
entity falls at (0,0). But note that this only happens for—yes, again—the 
box filter. For my favorite filter, the minpoint would fall at (−1.5,−1.5). 
Is that more convenient, prettier, or faster than (−2. ,−2. )? No. 

WHY IS THE LITTLE SQUARE MODEL SO PERSISTENT? 

I believe there are two principal reasons that the little square model hasn’t 
simply gone away: 

Geometry-based computer graphics uses it. 

Video magnification of computer displays appears to show it. 

Geometry-based computer graphics (3D synthesis, CGI, etc.) has 
solved some very difficult problems over the last two decades by assum-
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ing that the world they model could be divided into little squares. Render-
ing is the process of converting abstract geometry into viewable pixels 
that can be displayed on a computer screen or written to film or video 
for display. A modern computer graphics model can have millions of 
polygons contributing to a single image. How are all these millions of 
geometric things to be resolved into a regular array of pixels for display? 
Answer: Simplify the problem by assuming the rectangular viewport on 
the model is divided regularly into little squares, one per final pixel. 
Solve the often-intense hidden surface problem presented by this little 
square part of the viewport. Average the results into a color sample. This 
is, of course, exactly box filtering. And it works, even though it is low 
order filtering. We probably wouldn’t be where we are today in comput-
er graphics without this simplifying assumption. But, this is no reason to 
identify the model of geometric contributions to a pixel with the pixel. I 
often meet extremely intelligent and accomplished geometry-based com-
puter graphicists who have leapt to the identification of the little square 
simplification with the pixel. This is not a plea for them to desist from 
use of the little square model. It is a plea for them to be aware of the 
simplification involved and to understand that the other half of comput-
er picturing—the half that uses no geometry at all, the imaging half—tries 
to avoid this very simplification for quality reasons. 

When one “magnifies” or “zooms in on” an image in most popular 
applications, each pixel appears to be a little square. The higher the 
magnification or the closer in the zoom, the bigger the little squares get. 
Since I am apparently magnifying the pixel, it must be a little square, 
right? No, this is a false perception. What is happening when you zoom 
in is this: Each point sample is being replicated 𝑀𝑀 × 𝑀𝑀 times, for magni-
fication factor 𝑀𝑀. When you look at an image consisting of 𝑀𝑀 × 𝑀𝑀 pixels 
all of the same color, guess what you see: A square of that solid color! It 
is not an accurate picture of the pixel below. It is a bunch of pixels ap-
proximating what you would see if a reconstruction with a box filter were 
performed. To do a true zoom requires a resampling operation and is 
much slower than a video card can comfortably support in realtime to-
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day.79 So the plea here is to please disregard the squareness of zoomed in 
“pixels.” You are really seeing an 𝑀𝑀 ×𝑀𝑀 array of point samples, not a 
single point sample rendered large. 

HOW DOES A SCANNER DIGITIZE A PICTURE? 

Just to be sure that I eradicate the notion of little square everywhere, let’s 
look at the scanning process. I want to be sure that nobody thinks that 
scanners work with little squares and that, therefore, it is all right to use 
the model. 

A scanner works like this: A light source illuminates a piece of paper 
containing a colored picture. Light reflected from the paper is collected 
and measured by color sensitive devices. Is the picture on the paper di-
vided up into little squares, each of which is measured and converted to 
a single pixel? Not at all. In fact, this would be very hard to accomplish 
physically. What happens instead is that the illuminating light source has 
a shape or the receiving device has an aperture that gives the incoming 
light a shape or both, and the device integrates across this shape. The 
shape is never a square. It is not necessarily accurate, but will give you 
the correct flavor, to think of the shape as a Gaussian. In general, over-
lapping shapes are averaged to get neighboring pixel samples. 

So scanning should not contribute any weight to the little square 
model. 

HOW DOES A PRINTER PRINT A DIGITAL IMAGE? 

Again, let’s look at a familiar process to determine if it contributes to the 
little square model. The process this time is printing. This is a very large 
and complex subject, because there are many different ways to print an 
image to a medium. 

Consider printing to film first. There are several ways to do this. In 
any process where a flying spot of light is used to expose the film, then 

                                                                 
79 This remark is dated now. Realtime magnification is now readily available but simple pixel repli-
cation is still used remarkably often for “magnification.” 
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the exposing beam has a shape—think of it as Gaussian. There are no 
little squares in this process. 

Consider half-tone printing of ink on paper. The concept here is to 
convert a pixel with many values to a dot of opaque ink on paper such 
that the area of the dot relative to a little square of paper occupied by the 
dot is in the ratio of the intensity of the pixel to the maximum possible 
intensity. Sounds like the little square model, doesn’t it? But for color 
printing, the different primaries are printed at an angle to each other so 
that they can “show through” one another. Therefore, although there are 
little squares in each color separation, there are none for the final result. 

There is a new technique for printing ink-on-paper that uses stochas-
tic patterns within each little square. Hence the separations do not have 
to be rotated relative one another in order to “show through.” The little 
square model is a decent model in this case. 

There are sublimation dye printers and relatives now that print “con-
tinuous tone” images in ink on paper. I believe that these use little 
squares of transparent dyes to achieve continuous tone. In that case, they 
probably use the little square model. 

The point here is that the use of the little square is a printing tech-
nology decision, not something inherent in the model of the image be-
ing imaged. In fact, the image being imaged is simply an array of point 
samples in all cases. 

HOW IS AN IMAGE DISPLAYED ON A MONITOR? 

Many people are aware that a color monitor often has little triads of dots 
that cause the perception of color at normal viewing distances. This is of-
ten true, except for Sony Trinitrons that use little strips of rectangles ra-
ther than triads of dots. In neither case are there little squares on the dis-
play. I will assume triads for this discussion. It goes through for the Trini-
tron pattern too, however. 

While we are at it, I would also like to dispel any notion that the tri-
ads are pixels. There is no fixed mapping between triads and pixels driv-
ing them. The easiest way to understand this is to consider your own 
graphics card. Most modern cards support a variety of different color 
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resolutions—for example, 640 × 480, 800 × 600, 1024 × 768, etc. The 
number of triads on your display screen do not change as you change the 
number of pixels driving them. 

Now back to the display of pixels on a screen. Here’s roughly what 
happens.80 The value of a pixel is converted, for each primary color, to a 
voltage level. This stepped voltage is passed through electronics which, 
by its very nature, rounds off the edges of the level steps. The shaped vol-
tage modulates an electron beam that is being deflected in raster fashion 
across the face of your display. This beam has shape—again think of it as 
Gaussian (although it can get highly distorted toward the edges of the 
display). The shaped beam passes through a shadow mask that ensures 
that only the red gun will illuminate the red phosphors and so forth. 
Then the appropriate phosphors are excited and they emit patterns of 
light. Your eye then integrates the light pattern from a group of triads 
into a color. This is a complex process that I have presented only sketchi-
ly. But I think it is obvious that there are no little squares involved at any 
step of the process. There are, as usual in imaging, overlapping shapes 
that serve as natural reconstruction filters. 

Another display issue that implies the little square model is the no-
tion of displays with “non-square pixels.” Although it is becoming less 
common now, it used to be fairly common to have a video display driven 
by, say, a 512 × 480 image memory. This means that 512 samples are 
used to write a row to the display, and there are 480 rows. Video moni-
tors have, if correctly adjusted, a 4:3 aspect ratio.81 So the pixel spacing 
ratio (PSR) for this case is 

� 4
512�

� 3
480�

=  �4
3
� ∗ �480

512
� = 1.25.82 

                                                                 
80 This paragraph appears dated now, referring to the almost universal use of cathode ray tubes 
(CRTs) for display. But most color display technologies have some related broadening characteristic.  
81 Aspect ratio is the ratio of display width to height. 
82 If you look closely at this computation you will discover yet another application of the pernicious 
“little square” model—actually a “little rectangle” model. It assumes that 512 “pixels” are mapped to 
4 units and 480 of them to 3 units. In other words, it assumes a (problematical) mapping of “pixels” 
to a geometric rectangle. Nevertheless, 1.25 is a decent approximation of PSR in this case. 
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So the correct terminology for this case is that the monitor has a “non-
square pixel spacing ratio,” not that it has “non-square pixels.” Most mod-
ern computer displays, if correctly adjusted, have square PSR—that is, 
PSR =  1. 

So we have no contributions from scanning or display processes for 
the little square model. We have a case or two for particular printing 
technologies that support a little square model, but they are not the gen-
eral printing case. In summary, the processes used for image input and 
output are not sources for the little square model. 

WHAT IS A DISCRETE TO CONTINUOUS MAPPING THAT WORKS? 

The only mapping that I have been able to come up with that doesn’t as-
sume too much is this: Assume the samples are mapped to the integers 
(it’s so easy after all—just an offset to the array indices used to address 
them in an image computation). Then the outer extremes of the image are 
bounded by a rectangle whose left edge is (𝑓𝑓𝑖𝑖𝑓𝑓𝑐𝑐𝑠𝑠𝑢𝑢𝑤𝑤𝑖𝑖𝑢𝑢𝑐𝑐ℎ/2) to the left of 
the leftmost column of integers, right edge is (𝑓𝑓𝑖𝑖𝑓𝑓𝑐𝑐𝑠𝑠𝑢𝑢𝑤𝑤𝑖𝑖𝑢𝑢𝑐𝑐ℎ/2) to the right 
of the rightmost column of integers, top edge is (𝑓𝑓𝑖𝑖𝑓𝑓𝑐𝑐𝑠𝑠𝑢𝑢ℎ𝑠𝑠𝑖𝑖𝑒𝑒ℎ𝑐𝑐/2) above 
the topmost row of integers, and bottom edge is (𝑓𝑓𝑖𝑖𝑓𝑓𝑐𝑐𝑠𝑠𝑢𝑢ℎ𝑠𝑠𝑖𝑖𝑒𝑒ℎ𝑐𝑐/2) below 
the bottommost row of integers occupied by image samples). 

This is still not quite complete, because it assumes symmetric filters. 
There are cases—for example, perspective transformations on (recon-
structions of) images—when asymmetric filters are useful. So the mapping 
must be generalized to handle them. By the way, by symmetrical filter I 
mean that it is symmetrical about its horizontal axis, and it is symmetric-
al about its vertical axis. I do not mean that it is necessarily the same in 
both dimensions. 

I do believe that it is important to have the vertical dimension in-
crease downward. It is not required, but it is so natural that I find it hard 
to argue against. We display from top to bottom on millions of TVs and 
computer displays. We read from top to bottom. We compute on ma-
trices—the natural container for images—from top to bottom. Nearly all 
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popular image file formats store images from top to bottom,83 or if in 
tiled form, in rows of tiles from top to bottom. 

IMAGE BROADENING 

I mentioned earlier that I would return to a discussion of whether the mi-
nimal enclosing rectangle of a reconstructed image were the most natural 
representation of it. This will fall out of a discussion of image broadening. 

By the very nature of the Sampling Theorem that underlies everything 
that we do, during a reconstruction an image suffers broadening due to 
the width of the reconstruction filter. Again, look at Figure 2–Figure 4 
for examples. The amount of broadening is dependent on the filter used. 
If the filter is asymmetric, then so is the broadening. 

I call the excess of a broadened image over itself to be its margin. In 
general then, an image margin is not symmetric about its image and is 
dependent on the reconstruction filter being used. 

Let’s be concrete: Consider scaling 640×480 image down by a factor 
of 2 in both dimensions. The original image is assumed to have its min-
point at (0, 0) and its maxpoint (lower right corner) at (639, 479). As-
sume we are using a symmetric bicubic filter for good results. Its canoni-
cal footprint is {(𝑥𝑥,𝑦𝑦)| − 2.≤ 𝑥𝑥 ≤ 2. ,−2.≤ 𝑦𝑦 ≤ 2. }. Then to do the scal-
ing we reconstruct-transform-resample:84 When we reconstruct our im-
age into a continuum, it occupies the space from –2. to 641. horizontally 
and from –2. to 481. vertically. Thus its minimal enclosing rectangle has 
minpoint (–2., –2.) and maxpoint (641., 481.). If we were to resample at 
this moment, before doing any transform on the reconstruction, we 
would have broadened the image by one pixel all around; we would have 
introduced a 1-pixel margin by the act of reconstruction. (The filter has 0 
weight at its extremes so the samples along the minimal enclosing rec-
tangle would be 0 and not figure into the support of the sampled image.) 
                                                                 
83 The Targa file format (.tga) is the most flagrant violator of this rule; it also reverses RGB to BGR. 
And WINDOWS has adapted the Targa format for its “bitmaps” (without documenting the color 
channel reversal, as I unhappily discovered as a developer). 
84 Generally, there needs to be a low-pass filtering step too, before resampling. When scaling up, no 
high frequencies are introduced, but when scaling down, they are and must be low-pass filtered to 
satisfy the Sampling Theorem. 
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This is a good point to pause and note that it is not necessarily the 
broadened footprint that is interesting. In this case, if we have only a 
640×480 display then we would crop off the margin pixels for redisplay 
anyway. In my experience, I usually want to know about an image’s ex-
tent and its margins, before and after transformations, in full detail so 
that I can decide exactly what I want to do. The important point is that 
this information be available, not how. 

Back to the scaling example: Now let’s minify the reconstruction by 2. 
This means that the reconstruction is scaled down about its center. This 
is easily modeled by scaling down the minimal enclosing rectangle that I 
will represent as (–2., –2.) → (641., 481.). The scaling happens about the 
center at (319.5, 239.5). There are many ways to proceed from here so I 
will not pursue the details. I believe that I have presented enough of the 
problem and technique of solution that it is clear that nothing is offered 
to it by a little square model for the pixels. 

In fact, the little square model might have misled us into a com-
pounding of low quality techniques: It is tempting to box filter box fil-
ters. Thus it is tempting to take the 640×480 example above and look at 
each set of 2×2 pixels to scale down by 2. It is another application of the 
box filter to simply average each 2×2 set of pixels into a single new pixel. 
This is generally a bad idea and not the path to take for good results. 

SUMMARY 

I have presented a brief but inclusive analysis of sampling and filtering. It 
has been shown that the little square model does not arise naturally in 
sampling theory, the main underpinning of everything we do. It does not 
arise in scanning or display. It arises in printing only in restricted cases. 
The geometry world uses it a great deal because they have had to simplify 
in order to accomplish. Their simplified model of contributions to a pixel 
should not be confused with or identified with the pixel. Magnified screen 
pixels that look like little squares have been shown to be a quick and dirty 
trick (pixel replication) by graphics boards designers, but not the truth. In 
short, the little square model should be suspect whenever it is encoun-
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tered. It should be used with great care, if at all, and certainly not offered 
to the world as “standard” in image computing. 

In the process of this presentation, I have demonstrated at least one 
very natural mapping of the discrete samples of an image to a continuum 
reconstructed from it. The method used is straightforward and always 
works. I have also argued that the following details of such a reconstruc-
tion are interesting enough to track: the exact filter used, the image mar-
gins created by reconstruction, and minimal enclosing rectangles. I have 
also suggested that it is natural for the vertical coordinate to increase 
downwards, and that it is simple and natural for sample locations to be 
mapped to the integers. However, neither of these is required, so long as 
consistency reigns. I do argue, however, that placing samples at the half-
integers seems to indicate a lurking reluctance to dismiss the little square 
model, or the box filter, the only two common situations where the half-
integers are natural concepts. 

Finally, I have pointed out two related misconceptions: (1) The triads 
on a display screen are not pixels; they do not even map one-to-one to 
pixels. (2) People who refer to displays with non-square pixels should re-
fer instead to non-square, or non-uniform, pixel spacing. 
 



 

©2009–2010 Alvy Ray Smith 84 Working Draft 1/7/2010 

B: IMAGE COMPOSITING FUNDAMENTALS85 
 

ABSTRACT 

This is a short introduction to the efficient calculation of image composi-
tions. Some of the techniques shown here are not well known, and should 
be. In particular, we will explain the difference between premultiplied al-
pha and not.86 These two related notions are often confused, or not even 
understood. We shall show that premultiplied alpha is more efficient, 
yields more elegant formulas, and occurs commonly in practice. We shall 
show that the non-premultiplied alpha formulation is not closed on over, 
the fundamental image compositing operator—as usually defined. Most 
importantly, the notion of premultiplied alpha leads directly to the notion 
of image object, or sprite—a shaped image with partial transparencies. 

THE BASIC MODEL 

There are two ways to think of the alpha of a pixel. As is usual in comput-
er graphics, one interpretation comes from the geometry half of the world 
and the other from the imaging half. Geometers think of “pixels” as geo-
metrical areas intersected by geometrical objects.87 For them, alpha is the 
percentage coverage of a pixel by a geometrical object. Imagers think of pix-
els as point samples of a continuum. For them, alpha is the opacity at each 
sample. In the end, it is the imaging model that dominates, because a 
geometric picture must be reduced to point samples to display—it must be 
rendered. Thus, during rendering coverage is always converted to opacity, 
and all geometry is lost.  

                                                                 
85 The early parts of this appendix are redundant with the main part of this lecture, but I choose to 
ignore the redundancy to keep the appendix true to the original paper (Smith 1995a). To avoid 
most of the redundancy, go immediately to the section Composite Alpha. 
86 These are called associated and unassociated alpha as well. I can never remember which is which so 
don’t use the terms. 
87 A little square is a very common model for the “pixel.” I place this term in quotes to remind us 
that this is not a pixel (a sample) but a model for possible geometric contributions to the final sam-
ple. The last thing I want to promulgate is the notion that a pixel is a little square. 
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The Porter-Duff matting algebra (Porter & Duff 1984) that underlies 
what we present here is based on a model that is easiest to understand by 
alternating between the two conceptions.88 

The elementary imaging operation that we wish to elaborate is called, 
in (Porter & Duff 1984), the over operator. It captures the notion of 
compositing image J over image I, where either I or J or both may be par-
tially transparent. For ease, we will think of images I and J as being recti-
linear, the same size, and each having four channels—three for RGB col-
or and one for alpha (that is, opacity). 

Think of the following geometrical model: A “pixel” is an area α per-
cent covered by an opaque geometrical object with color 𝐴𝐴. Thus the 
amount of color contributed by that area is α𝐴𝐴. That is, we average the 
color over the “pixel” and come up with a single new color representing 
the entire area—the color α𝐴𝐴 is a point sample. 

Now think of another opaque geometrical object with color 𝐵𝐵 added 
to the original “pixel” area. Disregard for a moment the other geometric-
al object there. Assume that the new geometrical object has coverage of 
the “pixel” equal to β. So the “pixel” is contributing color β𝐵𝐵 due to this 
object. This again is a point sample representing the color of the second 
object. 

But now we use the geometry model to conceptually combine the 
contributions of the two objects in the “pixel” area. The second object is 
allowing only (1–β) percent of the “pixel” area to be transparent to any 
objects behind it. We simply ignore the actual geometry of the two ob-
jects at this point and assume that, in general, the “pixel” is allowing 
(1–β) times the color from behind, α𝐴𝐴, to show. This is added to the 
color due to the top object β𝐵𝐵. So the total color of object with color 𝐵𝐵 
over object with color 𝐴𝐴 is β𝐵𝐵 +  1–β)α𝐴𝐴. 

Notice that this result could be completely wrong if the geometry of 
the second object exactly coincided with that of the first. The bottom 
color would not contribute at all to the final color in this special case. So 
                                                                 
88 The Porter-Duff paper is an excellent example of why the little square model for contributions to 
a pixel has become confused, in the geometry-based computer graphics world, with the pixel itself. 
All illustrations in that paper use the little square model. A unit circle could have been used equally 
effectively, however—or any other unit area region. 
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the model we are using is an approximation for the general case of com-
bining two images where we no longer have any idea of how the alpha at 
a point was determined. In an image there is no way to tell whether a 
point sample with a partial opacity comes from a partially transparent 
surface or from an opaque surface partially occluding the area 
represented by the point sample. 

PREMULTIPLIED ALPHA 

The formula we have just derived from basic principles is this: For compo-
site color 𝐶𝐶 obtained by placing a pixel with color 𝐵𝐵 and alpha β over a 
pixel with color 𝐴𝐴 and alpha α: 

𝐶𝐶 = β𝐵𝐵 +  1–β)α𝐴𝐴 = β𝐵𝐵 + α𝐴𝐴–βα𝐴𝐴. 

Notice how many multiplies this formula implies—three89 at each pix-
el for each color component. Considering that this formula is extremely 
basic to computer graphics and that multiplies are expensive,90 the early 
researchers at Lucasfilm and Pixar observed that this formula could be 
reduced to one multiply per pixel per component if the alphas were pre-
multiplied times the color of an image. That is, if the color channels of 
image 𝛼𝛼 contained, not color 𝐴𝐴, but weighted color α𝐴𝐴, and similarly for 
image 𝐽𝐽, then the formula above reduces to 

𝐶𝐶′ = 𝐵𝐵′ + (1–β)𝐴𝐴′ = 𝐵𝐵′ + 𝐴𝐴′–β𝐴𝐴′ 

where the primes indicate colors have been premultiplied by their corres-
ponding alphas. The images are said to have premultiplied alphas. Of 
course, it is the color channels that are different, not the alpha channels, 
despite this terminology. 

There is a subtlety here that will cause trouble if not identified. We 
have called the resulting color here C' as if it were different from the 
color C computed above in the non-premultiplied alpha case. But it isn’t! 
It is the same computation, where entities on the right have been abbre-
viated because of premultiplication. We will return to this problem later. 

                                                                 
89 Two, actually, with a little rearrangement: 𝑇𝑇 = α𝐴𝐴,𝐶𝐶 = β(𝐵𝐵–𝑇𝑇) + 𝑇𝑇. 
90 They were especially expensive then. Now we would just like to avoid extra steps. 
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Images with premultiplied alphas have been used for many years very 
successfully by Lucasfilm, Pixar, and Altamira in hundreds of thousands, 
if not millions, of images. The TIFF image storage format is aware, as of 
version 6.0, of premultiplied alphas. 

COMPOSITE ALPHA 

We have given the formulas above for the color channels in a composite 
of two partially transparent images. What is the composite alpha channel 
formula? Notice that it will be the same for both cases, since premultiplica-
tion only applies to the color channels. 

The same model as used above for composite color can be used for 
composite alpha. The average opacity of the “pixel” partially covered by 
the first geometric object is β, and that for the second geometric object is 
α. But the geometry of the model allows only (1–β) of the lower light 
filter to be effective. So the composite alpha is 

γ = β + (1–β)α = β + α–αβ 

in either case, premultiplied or not. 

AN ELEGANT FORMULATION AND A FLAWED ONE 

Let’s collect together the results from above. 

Compositing Formulas for over, Colors Not Premultiplied by Alpha: 

𝐶𝐶′ = β𝐵𝐵 + (1–β)α𝐴𝐴 = β𝐵𝐵 + α𝐴𝐴–βα𝐴𝐴 

γ = β + (1–β)α = β + α–αβ 

 
Compositing Formula for over, Colors Premultiplied by Alpha: 

𝐶𝐶′ = 𝐵𝐵′ + (1–β)𝐴𝐴′ = 𝐵𝐵′ + 𝐴𝐴′–β𝐴𝐴′ 

In the latter case, we need only one formula to represent the color 
channels and the alpha channel, a more elegant formulation certainly 
than the former case that requires a formula for the color channels dif-
ferent from that for the alpha channel. 

Now we will see why the former case is flawed. 
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THE “SECOND-COMPOSITION” PROBLEM 

You may have noticed that this time I used 𝐶𝐶′ for the left side of the non-
premultipled colors case, since it has already been observed that 𝐶𝐶 and 𝐶𝐶′ 
are the same color in either formulation. Recall that the prime indicates a 
color that has been premultiplied by its alpha. So you see the problem: 
The first formulation maps non-premultiplied colors into premultiplied 
colors. The second maps premultiplied colors into premultiplied colors. In 
other words, the usual definition of over for non-premultiplied images is 
not closed on over, a problem we will fix below. 

This problem is called the “second-composition” problem because it 
shows up in second (or subsequent) compositions using results from first 
(or earlier) compositions. Let image 𝐾𝐾 be the result obtained above for 
𝐽𝐽 𝐨𝐨𝐨𝐨𝐨𝐨𝐨𝐨 𝛼𝛼. Suppose we want to perform a second non-premultiplied com-
position of 𝐿𝐿 𝐨𝐨𝐨𝐨𝐨𝐨𝐨𝐨 𝐾𝐾, where image 𝐿𝐿 has color 𝐷𝐷 and alpha δ. In order to 
use the formula above we need the non-premultiplied color of 𝐾𝐾 and its 
alpha δ. The non-premultipled color of 𝐾𝐾 is 𝐶𝐶′ divided by δ. So the 
second-composition formula is 

2nd-Compositing Formulas for over, Colors Not Premultiplied by Alpha: 

𝐸𝐸′ = δ𝐷𝐷 + (1– δ)γ(𝐶𝐶′/γ) = δ𝐷𝐷 + (1– δ)𝐶𝐶′ = δ𝐷𝐷 + 𝐶𝐶′– δ𝐶𝐶′ 

The alpha channel calculation is as before, and the premultiplied case 
works as before. That is, there is no second-composition problem for the 
premultiplied case—another example of its relative elegance. 

But the non-premultiplied case is a mess. One either has to divide 
through by the new alpha at each pixel in order to use the original (first-
composition) formulas, or one has to carry around a mixture of premul-
tiplied and nonpremultiplied information to use the simpler second-
composition formulas. 

So here are the cleanest formulations for the two cases, where we do 
not clutter up our minds with two different models during the course of 
a series of compositions and where there is no need for the confusing 
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first- and second-composition distinction—that is, these formulations are 
closed on over:91 

Closed Compositing Formulas for over, Colors Not Premultiplied by Al-
pha: 

γ = β + (1–β)α = β + α–αβ 
𝐶𝐶′ = β𝐵𝐵 + (1–β)α𝐴𝐴 = β𝐵𝐵 + α𝐴𝐴–βα𝐴𝐴 

𝐶𝐶 = 𝐶𝐶′/γ 
 

Closed Compositing Formula for over, Colors Premultiplied by Alpha: 

𝐶𝐶′ = 𝐵𝐵′ + (1–β)𝐴𝐴′ = 𝐵𝐵′ + 𝐴𝐴′–β𝐴𝐴′ 

Many practitioners are unaware of the second-composition problem 
because they often only do one composition—for example, as the last 
stage of a 3D rendering project: all the objects are rendered as sprites,92 
then they are composited, and never used again. Or more importantly, 
composites of them are never used for future composites. It is the mod-
ern world of cheap memory that has made it possible and common to 
recomposite a set of sprites many times and to use composites of compo-
sites frequently. 

NON-PREMULTIPLICATION PROBLEMS 

The analysis above looks pretty bad for the non-premultiplied case, but 
let’s look at it more closely. The bad step is the divide by alpha to return a 
non-premultiplied color. In the typical case of integer colors and integer 
alphas, this leads to inaccuracy. And it is not even possible if alpha is 0. 
But we can sometimes avoid this divide and/or loss of information. 

A new alpha of 0 at a composite pixel means (1) that, in the coverage 
model, neither image I nor J was present at that pixel, or (2) that, in the 

                                                                 
91 I just discovered (5 Nov. 1996) in a correspondence with Marc Levoy that he and Bruce Wallace 
came up with an equivalent formulation for the nonpremultiplied case in (Wallace 1981), p. 257. 
92 I am loosening the terminology here, temporarily, to extend “sprite-hood” to non-premultiplied 
images with an alpha. 
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opacity model, both colors are known but both opacities are 0, or (3) a 
mixture of these. In case (1), we know that there is no defined color so 
could store an indication of this in the color channels. In case (2), both 
colors have to be summarized somehow as one color—for example, an 
equal mixture of the two is stored. There must be a loss of color mixing 
information here. In case (3), one image is not present and we know the 
color of the other, so there is no problem. 

In the non-0 alpha case, if we have a geometric model of the contri-
butions to a pixel, then we can compute, in the reals, what the mixture 
of colors at the pixel should be—as opposed to using the integer divide 
technique above. If all we have is an opacity model at the pixel, then 
again there must be a loss of color mixing information. 

This analysis shows that we can improve the non-premultiplied case 
but not completely. But, of course, there is no such problem if one is 
guaranteed to use a sprite for compositing exactly once. More carefully, 
there is no problem if one is guaranteed to never use the results of a 
composition for future compositions. 

PREMULTIPLICATION PROBLEMS 

Is there anything wrong with the premultiplied alpha case? Well, yes there 
is. There are times when one wants the full non-premultiplied color of a 
pixel. This requires a divide by the corresponding alpha, hence the prob-
lems with integer divide and loss of information mentioned above. 

So what to do? It seems clear that for reusable sprite objects—
particularly reusuable composites of them—the premultiplied case is su-
perior, except for the problem just mentioned. How often does it occur? 
And how substantial is it when it does occur? 

My experience in the graphic arts use of sprites—the Altamira COM-

POSER image compositing application, for example—is that the error in-
troduced by the occasional need to divide out alpha is typically so minor 
as to be unnoticed. In fact, no user has ever noticed it in Altamira COM-

POSER to my knowledge. The divide by zero problem never occurs be-
cause, by definition, a clear pixel (alpha and all color components equal 
to 0) does not “exist” so is ignored. 
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I am reminded of a division of the geometry-based computer graphics 
world into what is usually called CAD and, say, CGI. The distinction is 
that CAD requires accurate geometry because it is being used by archi-
tects and engineers. CGI is only required to look good. Accuracy can be, 
and often is, sacrificed in CGI to get a satisfactory look quickly. 

The point is that there is a similar division of the sampling-based side 
of the computer picturing world, based on user type or market. Clearly, 
accuracy is very important to such users of images as medical doctors and 
astronomers. But use of images in the graphics arts is much more forgiv-
ing. Here, again, the result must be pleasing rather than accurate. 

SOME USEFUL APPROXIMATIONS 

We derive now some very useful integer approximations for the implied 
floating point operations in the formulas above. These apply in the case of 
the very common 8-bit channel—for example, 24-bit color image plus 8-bit 
alpha. 

The integer approximations below are derived from the geometric se-
ries 

𝑚𝑚 + 𝑚𝑚𝑢𝑢 + 𝑚𝑚𝑢𝑢2 + 𝑚𝑚𝑢𝑢3+. . . = 𝑚𝑚/(1– 𝑢𝑢) 

for |𝑢𝑢| < 1. We apply the series this way: Let 𝑢𝑢 = 1/256. Notice that 

𝑐𝑐/255 ≡ (𝑐𝑐/256)/(1– 𝑢𝑢). 

Thus, given two numbers 𝑚𝑚 and 𝑏𝑏, each on [0, 255] and with product 𝑐𝑐 on 
[0, 2552], we get 𝑐𝑐/255 on [0, 255]—as desired—by using the first two 
terms of the geometric series: 

(𝑐𝑐 ≫ 8) + (𝑐𝑐 ≫ 16) + (𝑐𝑐 ≫ 24)+. . . 

Notice that 

(𝑐𝑐 ≫ 8) + (𝑐𝑐 ≫ 16) ≡ ((𝑐𝑐 ≫ 8) + 𝑐𝑐) ≫ 8 ≡ ((𝑐𝑐 ≪ 8) + 𝑐𝑐) ≫ 16. 

This is captured by the INT_MULT( ) definition below which assumes 𝑚𝑚 and 
𝑏𝑏 are each on [0, 255], 𝑐𝑐 is an int temporary variable that holds the prod-
uct 𝑚𝑚 ∗ 𝑏𝑏, which is returned on [0, 255], as if one of 𝑚𝑚 or 𝑏𝑏 were a fraction 
on [0,1] used to weight the other—for example, as an alpha. In the style of 
the language C: 
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#define INT_MULT(𝑚𝑚, 𝑏𝑏, 𝑐𝑐)              ((𝑐𝑐) = (𝑚𝑚) ∗ (𝑏𝑏), ((((𝑐𝑐) ≫ 8) + (𝑐𝑐)) ≫ 8)) 

We now use the INT_MULT( ) function to define other useful approxima-
tions. (We will present an even better macro for it below.) 

Classic linear interpolation—or lerp—as it is affectionately called in 
computer graphics—is defined in floating point below. It is read “lerp 𝑝𝑝 
to 𝑞𝑞 by alpha 𝑚𝑚.” 𝑚𝑚 is assumed to lie on [0, 1]. Note that 𝑚𝑚 ≡ 0 implies 𝑝𝑝; 
𝑚𝑚 ≡ 1 implies 𝑞𝑞. 

#define FLOAT_LERP(𝑝𝑝, 𝑞𝑞,𝑚𝑚)          ((𝑚𝑚) ∗ ((𝑞𝑞)– (𝑝𝑝)) + (𝑝𝑝)) 

In this integer version 𝑐𝑐 is an int temporary variable: 

#define INT_LERP(𝑝𝑝, 𝑞𝑞,𝑚𝑚, 𝑐𝑐)      ((𝑝𝑝) + INT_MULT(𝑚𝑚, ((𝑞𝑞)– (𝑝𝑝)), 𝑐𝑐)) 

Premultiplied lerp assumes 𝑞𝑞 has been premultiplied by 𝑚𝑚. 

#define FLOAT_PRELERP(𝑝𝑝, 𝑞𝑞,𝑚𝑚)             ((𝑝𝑝) + (𝑞𝑞)– (𝑚𝑚) ∗ (𝑝𝑝)) 

In this integer version 𝑐𝑐 is an int temporary variable: 

#define INT_PRELERP(𝑝𝑝, 𝑞𝑞,𝑚𝑚, 𝑐𝑐)            ((𝑝𝑝) + (𝑞𝑞)– INT_MULT(𝑚𝑚,𝑝𝑝, 𝑐𝑐)) 

So our formulas for composition (with ′ (prime) consistently 
representing premultiplication) become, in the 8-bits per channel case: 

8-Bit Compositing Formulas for over, Colors Not Premultiplied by Alpha: 

𝐶𝐶′ = INT_LERP(INT_MULT(𝐴𝐴,α, 𝑐𝑐0),𝐵𝐵,β, 𝑐𝑐1) 
γ = INT_PRELERP(α,β,β, 𝑐𝑐) 

𝐶𝐶 = 𝐶𝐶′/γ 
 

8-Bit Compositing Formula for over, Colors Premultiplied by Alpha: 

𝐶𝐶′ = INT_PRELERP(𝐴𝐴′,𝐵𝐵′,β, 𝑐𝑐) 

Caution! The approximations above must be used with care. In par-
ticular, the case α = 1 is a problem. Note that INT_MULT(255,255, 𝑐𝑐) is 
254, not 255. Also note that INT_PRELERP(255,255,255, 𝑐𝑐) is 256, which is 
even worse. One-bit errors at other than the high or low end of the range 
are often tolerable, but not at the extremes. In practice, this is not usual-
ly a problem. A typical software loop looks for the special cases of α = 0 
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and α = 1, and skips the interpolation computation there. These two 
cases are so common in imaging that this technique saves much compu-
tation. We see from the note above that it is important to check for the 
α = 𝟏𝟏 case and avoid the approximation in that case. 

The INT_MULT( ) macro above suffers from 1-bit errors, in about half of 
the cases. There are better approximations if one does not mind absorb-
ing a little more cost, if special casing is undesirable, or if hardware im-
plementation is the goal. One pointed out to me by colleague John 
Snyder is to use three terms in the power series approximation: (𝑐𝑐 ≫
8) + (𝑐𝑐 ≫ 16) + (𝑐𝑐 ≫ 24). This loses no bits, but requires 32-bit arith-
metic as written. 

Another, pointed out by colleague Jim Blinn, is to use roundoff in 
the approximation, rather than truncation: ((𝑐𝑐 ≫ 8) + 𝑐𝑐 + 0𝑥𝑥80) ≫ 8. 
This is good, but it still suffers from 1-bit errors in a few cases (24 to be 
exact). Jim determined that rounding t before shifting got rid of even 
these errors. So the best macro is this: 

#define INT_MULT(𝑚𝑚, 𝑏𝑏, 𝑐𝑐) ((𝑐𝑐) = (𝑚𝑚) ∗ (𝑏𝑏) + 0𝑥𝑥80, ((((𝑐𝑐) ≫ 8) + (𝑐𝑐)) ≫ 8)) 

at a cost of one additional add. It has no 1-bit errors and can be per-
formed in 16-bit arithmetic.93 See (Blinn 1994a, Blinn 1994b) for Jim’s 
arguments in support of premultiplied alpha. 

IMAGE OBJECTS OR SPRITES 

The most important result of using premultiplied alphas is conceptual—
the conceptual change from 

Old Notion: An image is a rectilinear array of pixels. The alpha channel, 
if any, tells how each pixel is to be treated. Each image pixel has a color 
that may be masked on or off (or partially on) by the corresponding al-
pha channel pixel.  

to 

                                                                 
93 And can be realized in one register in six Intel instructions! Here they are (also by Jim Blinn and 
independently by Microsoft’s David Jones): mov al,a; mul b; add ax,0x80; add al,ah; adc ah,0; mov 
r,ah. 
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New Notion: An image is a shaped array of pixels with partial transpa-
rencies. The alpha channel is intrinsic. The image pixels at transparent 
pixels (alpha zero) simply do not conceptually exist. 

This new notion is captured in the sprite object (or image object, as I for-
merly called it). 

I argue strongly for wider adoption of and promulgation of the pre-
multiplied alpha concept that led us to the notion of sprite, and for the 
elegance of its formulation. It has problems but they are far fewer than 
those for the alternative. 
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Figure 1. Geometry vs sampling 
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(a) A 5x4 image

(b) The footprint of a reconstruction filter

(c) Footprint of image under reconstruction (d) Footprint of reconstructed image

(e) Reconstruction translated (.5,.5), then 
resampled into a 6x5 image

(f) The resulting 6x5 image

 

Figure 2. To do geometry on images: Reconstruct, transform, resample 
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(a) A 5x4 image.

(b) The footprint of a reconstruction filter.
A cubic, or windowed sinc, for example.

(c) Footprint of reconstructed image.
Typical high quality reconstruction.

Would be resampled into 7x6 image.

Fixed reference point

 

Figure 3. Excellent reconstruction 
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(a) A 5x4 image.

(b) The footprint of a reconstruction filter.
A simple box filter, for example.

(c) Footprint of reconstructed image.
The worst case: low quality reconstruction.

Fixed reference point

 

Figure 4. Crude reconstruction 


