
TTiinntt FFiillll

Alvy Ray Smith
Computer Graphics Lab

New York Institute of Technology
Old Westbury, NY 11568

Published in: SIGGRAPH 79 Conference Proceedings, Aug 1979, 276-282. Also Technical Memo No
6, Computer Graphics Lab, New York Institute of Technology, Jul 1978, and issued as tutorial
notes at SIGGRAPHs 78, 80-82. The document was reentered by Alvy Ray Smith and his son Sam
in Microsoft Word on 10 Oct 2000. Spelling and punctuation are generally preserved, but trivially
minor spelling errors are corrected. Otherwise additions or changes made to the original are
noted inside square brackets. The following note accompanies the original document:

Permission to copy without fee all or part of this material is granted provided that the copies are
not made or distributed for direct commercial advantage, the ACM copyright notice and the title
of the publication and its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or
specific permission.
©1979 ACM O-89791-004—4/79/0800—276 $00.75

Abstract
To fill a connected area of a digital image is to change the color of all and

only those pixels in the area. Fill algorithms for areas defined by sharp bounda-
ries (e.g., a white area surrounded by a black curve) have been implemented at
several color computer graphics installations. This paper presents an algorithm
for the more difficult problem of filling areas with shaded boundaries (e.g., a
white area surrounded by a curve consisting of several shades of gray). These
images may arise from digitizing photographs or line drawings with a scanning
video camera, or they may be generated by programs which produce antialiased
line segments or dekink black-and-white images. When an area in such an image
is to be filled with a new color, it is desirable to have the fill algorithm under-
stand the shaded edges and maintain the shading with shades of the new color
instead of the old. The tint fill algorithm presented here accomplishes this task.
Its name arises from its ability to change only the tint (hue and saturation) of a
pixel, leaving the value (blackness) unchanged. Although the algorithm was mo-
tivated by and is written in terms of color, it has a more general interpretation,
which is also presented.

Key words: fill, flood, tint, gradient, hue, saturation, value, color, matte.

CR categories: 8.2, 3.41.

Introduction
We reinvent the wheel in the first half of this paper by solving the following

simply stated problem:

Given a connected set A of points on the 2-dimensional integer
grid, all of the same color c, and bounded by points, none of color c,

Digital Filtering Tutorial For Computer Graphics 2

and given a color c’ ≠ c, find an algorithm for changing all and
only the points of A from color c to c’.

We shall call an algorithm which solves this problem a fill algorithm. Fill
algorithms have been presented several times before in various guises (e.g.,
[1,2,3,6]). We present one here not only to document it thoroughly but also to
serve as a basis for generalization, in the second half of the paper, to a more so-
phisticated algorithm to be called the tint fill algorithm. It will be easier to ex-
plain tint filling after (simple) filling is described, so a detailed definition is post-
poned until then. The filling described here is independent of information exter-
nal to the integer grid, so is not to be confused with the rendering of an external
data set [5].

Our bias is toward color computer graphics as evidenced by use of the word
“color” in the problem statement above. By the color of a point we simply mean
a mapping of the point into a set C, which we choose here to call the set of colors.
Hence the intuitive model has each point represented by a small square centered
on the point and painted some color. C might be the set M={0,1,…,255} where 0 is
interpreted as black, 255 as white, and all other “colors” as grays. Or C might be
the set MxMxM where each triple is interpreted as the red, green, and blue (RGB)
primary components of colors. A rectangular subset of these squares forms a pic-
ture, and each square is therefore called a pixel1, from picture element. Changing
the color of an area, a connected set of pixels, in a picture is called filling the area.

By connected we shall mean 4-connected in the sense of Rosenfield [7]. Two
pixels are 4-connected if they share exactly an edge, 8-connected if they share at
most an edge or at least a corner. For I the integers, a set A of points in IxI is 4-
connected if and only if for any two points P and P’ in A there is a subset B of
points in A, B={P0,P1,…,Pn}, such that Pi is 4-connected to Pi+1 for 0 i n≤ < , P0=P,
and Pn=P’. B is said to be a 4-connected path in A.

The boundary of a 4-connected set A of points in IxI is the set B of all points
4-connected to points in A but not in A. Thus the boundary of a 4-connected set
is only 8-connected (and vice versa). We shall describe the filling of 4-connected
areas and only briefly mention the filling of 8-connected areas.

For presentation of the fill algorithm it is convenient to think of a picture as
stored in a digital memory where a location has address (x,y) and the value
stored there is c. Such special purpose memories do exist and are called frame
buffers. It is the presence of several of these frame buffers at NYIT (New York
Institute of Technology) which was the motivation for a fill program and hence
for this paper.

More specifically, a frame buffer is a random access digital computer mem-
ory designed to hold two-dimensional information, where its contents is con-
tinually displayed on a standard color video monitor. At NYIT a typical frame
buffer has 243K bytes of memory (3x243K bytes for RGB frame buffers) arranged
to display 486 lines of 512 pixels each. Thus there are 8 bits of storage for each
pixel (24 bits for RGB), and the contents is called a pvalue (pixel value). Thirty

1 [I now eschew the use of the word pixel to mean a little colored square, but the “little square”
model is useful here.]

Digital Filtering Tutorial For Computer Graphics 3

times a second, the video circuitry of a frame buffer displays the memory, in
standard video interleaved scanline order, by doing a table lookup on each suc-
cessive pvalue along a scanline. The three values returned from the table directly
control the three gun voltages of the monitor. Hence the table is called a color-
map. Because of this indirection, the association of a given pvalue with a color—
and hence the tint and value of this color [8]—is completely arbitrary to within
the gamut, or range, of colors which the video monitor can display.

There are many ways to create arbitrarily shaped areas in a frame buffer.
Two common ways at NYIT are by handpainting [9] or by automatic entering of
animated cartoon characters [10]. Using the fill algorithm, every pvalue in such
an area may be changed automatically by first selecting the new pvalue and then
indicating any point in the area to be filled. Because of the table lookup described
above, changing every pvalue in an area is equivalent to changing the color of
the area.

The fill algorithm described below assumes a user has selected an area to fill
with a new pvalue he has selected. He passes the area information to the algo-
rithm by specifying only a seedpoint to it. This point—i.e., an (x,y) pair—might
be selected by typing at a keyboard or by pointing with the stylus of a tablet, for
example. The area to be filled is, of course, the set of points 4-connected to the
seedpoint and of the same pvalue as that originally held by the pixel there.

First a basic fill algorithm is presented. Then it is made faster by a simple ob-
servation. The extension of fill to RGB, or 24-bit, frame buffers is discussed
briefly. Finally a more sophisticated fill algorithm is presented which can fill ar-
eas bounded by antirastered, or “smooth”, edges (see below). This algorithm,
called tint fill, is used extensively at NYIT for coloring animated cartoon charac-
ters entered into a frame buffer by digitizing the output of a scanning video cam-
era.

Conventions
In the sequel there is a set of routines which define the fill algorithm and

variations on it. We will use the following conventions: A variable in a routine is
assumed global to all subroutines called from it. The symbols $right, $left, $top,
and $bottom represent the maximum and minimum values which x and y may
assume in a given frame buffer. For example, for the frame buffers at NYIT
$left=0, $right=511, $bottom=0, and $top=485. The data type pvalue holds the
information contained in one pixel in a given frame buffer. Finally, upper case
names are procedure names and underlined terms in procedure statements are
assumed to be reserved words of the language used.

Basic Fill Algorithm
All the algorithms to be presented are scanline oriented. That is, each algo-

rithm tries to fill along a scanline before it changes y, the vertical coordinate. The
basic notion is that FILL fills all pixels 4-connected to the seedpoint on the first
scanline. Then it looks at the scanline above and below for points 4-connected to
the scanline segment just filled (and of the same color as the seedpoint pixel be-
fore it was filled). A number of these points sufficient to guarantee connectivity
go on a stack maintained by FILL. When the scans are finished, a point is popped

Digital Filtering Tutorial For Computer Graphics 4

from the stack and this becomes a new seedpoint. Only one point per scanline
segment to be filled need be pushed. Fig. 3 shows the filling of five scanline seg-
ments. The black dots are points pushed onto the stack. The variables lx and rx
used in the formal algorithm statement below are the left and right x coordinates
of a scanline segment.

procedure BASICFILL (seedx,seedy,newpv);
 integer seedx,seedy;
 pvalue newpv;
begin
 integer x,y,lx,rx;
 pvalue new,old;

 x:=seedx; y:=seedy;
 new:=newpv; old:=GET;
 if old=new then return;
 PUSH;
 while STACKNOTEMPTY do begin
 POP;
 if GET=new then continue;
 FILLINE;
 SCANHI; SCANLO;
 end
end

The utility subroutine GET returns the pvalue stored at frame buffer location
(x,y). Its complement SET sets frame buffer location (x,y) to pvalue new.

The utility subroutine PUSH pushes x and y onto the stack. POP pops the top
two locations from the stack into x and y. STACKNOTEMPTY returns true if the
stack is not empty or false if it is but does not alter the stack. We will assume, un-
til a later section, an infinite stack.

Utility SAVEX saves the current value of x in temporary storage. It is re-
trieved by RESTOREX. SAVEXY and RESTOREXY serve the same purpose for
(x,y).

The other subroutines are defined by these procedures.

procedure FILLINE;
begin FILLRIGHT; FILLEFT; end

procedure FILLRIGHT;
begin
 SAVEX;
 while GET=old and x≤$right do begin
 SET; x:=x+l;

Digital Filtering Tutorial For Computer Graphics 5

 end
 rx:=x-l; RESTOREX;
end

procedure FILLEFT;
begin
 SAVEX; x:=x-l;
 while GET=old and x>$left do begin
 SET; x:=x-l;
 end
 lx:=x+l; RESTOREX;
end

The shadow of a scanline segment is the set of pixels just under (or just
above) the pixels in the segment. A scanline segment of length n pixels has two
shadows (except, of course, one that lies in line $top or $bottom), each of length
n. SCANLO (or SCANHI) below stacks only one point from each scanline seg-
ment just filled with FILLINE. This point is the leftmost point in each scanline
segment, or subset of a scanline segment, in the shadow.

procedure SCANHI;
begin
 if y+l>$top return;
 SAVEXY; x:=lx; y:=y+l;
 while x≤rx do begin
 while GET ≠ old and x<rx do x:=x+l;
 if x>rx then break;
 PUSH;
 while GET=old and x<rx do x:=x+l;
 end
 RESTOREXY;
end

procedure SCANLO;
begin
 if y-l<$bottom return;
 SAVEXY; x:=lx, y:=y-l;
 while x<rx do begin
 while GET ≠ old and x<rx do x:=x+l;
 if x>rx then break;
 PUSH;
 while GET=old and x<rx do x:=x+l;
 end

Digital Filtering Tutorial For Computer Graphics 6

 RESTOREXY;
end

Improved Fill Algorithm
The speed of the fill algorithm above can be improved by noticing that when

neighboring scanline segments are being filled, one of the procedure calls to
SCANHI or SCANLO may be redundant. For example, consider filled scanline
segments b and c where c falls completely in the shadow below b, and c was
filled after b. There is no need to scan along the scanline above c for new seed-
points. In general, there can be no new seedpoints in a scanline segment already
filled unless that segment includes pixels more than distance one outside the
shadow (on either end) of the segment just filled. Thus the improved fill algo-
rithm below checks for the cases when it can skip one of the scans above or be-
low. The criteria are summarized in the two new subroutines HINEIGHBOR and
LONEIGHBOR.

procedure FILL (seedx,seedy,newpv);
 integer seedx,seedy;
 pvalue newpv;
begin
 integer x,y,lx,rx,yref,lxref,rxref;
 pvalue new,old;
 x:=seedx; y:=seedy;
 new:=newpv; old:=GET;
 if old=new then return;
 yref:=y; PUSH;
 while STACKNOTEMPTY do begin
 POP;
 if GET=new then continue;
 FILLINE;
 if HINEIGHBOR then SCANHI
 else if LONEIGHBOR then SCANLO
 else begin
 SCANHI; SCANLO;
 end;
 yref:=y; lxref:=lx; rxref:=rx;
 end
end

procedure HINEIGHBOR;
begin
 if y=yref+l and lx>lxref-l and rx<rxref+l then return true else return false;
end

Digital Filtering Tutorial For Computer Graphics 7

Replace yref+l in HINEIGHBOR with yref-l to get LONEIGHBOR.

Variations on Fill
Programs realizing several variations on the simple fill algorithm just pre-

sented have been written and run at NYIT. This summary does not include tint
fill which is more than a simple variation and will be presented subsequently.
The most important variation is the extension of the 8-bit fill program to the 24-
bit version. In this case the algorithm is not changed. Only the definition of the
data type pvalue changes. The 24-bit pvalues are equal if and only if the red
fields are equal, the green fields are equal, and the blue fields are equal.

Another variation is the so-called “boundary fill” algorithm. Here an area is
assumed to be surrounded by an 8-connected curve of pixels all of the same
pvalue, called the boundary pvalue. The algorithm is designed to fill the area en-
closed by this boundary regardless of what colors the enclosed pixels have (see
Fig. 2). The basic test in the fill algorithm becomes in this case

 if GET ≠ boundarypvalue then SET

instead of

 if GET=old then SET

(see FILLINE above). This boundary fill algorithm has the restriction that the
color used to fill the area must not already exist at any pixel in the area (unless
the filling color is that of the boundary pvalue). The GET=new test after POP
may fail otherwise. An easy solution is to boundary fill with a reserved color
then refill with simple fill and the desired color.

Another variation is called “texture fill”. Instead of filling an area of constant
color with a single new color, it is filled with a pattern either algorithmically
generated or contained in another frame buffer. In this case the restriction is that
no color in the pattern can be the original color of the area being filled.

The texture fill program fell into disuse at NYIT after 1975. Regular fill with a
matte color and then a one-pass copy of one frame buffer contents to another
based on the matte so generated is computationally cheap and fast and does not
suffer from the restriction of texture fill. The extra frame buffer is not needed if
the texture is algorithmically generated. Another approach is presented in [3]
which uses more computation instead of more memory to avoid the problems of
texture fill.

Another variation, which has not been implemented at NYIT, is the fill of 8-
connected areas instead of 4-connected areas. All that is required to adapt BA-
SICFILL to the 8-connected case is a more elaborate neighborhood check in the
routines SCANHI and SCANLO.

Tint Fill
Line drawings digitized into a frame buffer from pen or pencil drawings via

a scanning video camera have the appearance of white areas enclosed by

Digital Filtering Tutorial For Computer Graphics 8

“shaded” curves. That is, the curves are not sharp black lines but are composed
of many shades of gray. They tend to be black or almost black near the centerline
of the curve and shade to white near its edges. When one of these areas is to be
filled, it is desirable to have the fill algorithm understand the shaded edges and
maintain the shading with shades of the new color instead of the old. The tint fill
algorithm was created to accomplish this task.

Another increasingly common practice in computer graphics also creates ar-
eas with shaded edges. This is the process of antialiasing edges. A two-color digi-
tal approximation to a straight line in a frame buffer has the appearance of
stairsteps. This is called the “jaggies” or “aliasing”. A human can be fooled into
seeing a smooth rendering of a line by techniques called antialiasing. One of
these techniques consists of laying down a ramp of gray shades (assume a black-
and-white line with jaggies for this explanation) along each stairstep. All of the
antialiasing techniques introduce shades into the edges. Here too the tint fill al-
gorithm is useful.

The basic notion of the tint fill algorithm below is this. Suppose white is high
and black is low. Then a scanned-in image or an antirastered line drawing may
be thought of as a physical terrain where the white areas have high elevation and
the black lines are valleys of low elevation. The shadings of the lines are repre-
sented in this terrain by the slopes of the valley walls. To fill a pixel with tint fill
means to change the hue and saturation, i.e., the tint, of the pixel color only, not
its value, or blackness [8]. Tint fill fills along a scanline under the rule that it can
never go uphill. It can fill along level ground or downhill only. A scanline seg-
ment for tint fill consists of all the pixels proceeding from the seedpoint and right
(and left), which have the same tint as the seedpoint and a value which is either
the same or less than the pixel just left (right). Thus a scanline segment is a sec-
tion of a hill or mesa. The shadows of a scanline segment are as before: all the
pixels just below (above) the pixels in the scanline segment. Three scanline seg-
ments are tint filled in Fig. 4.

A formal statement of the problem in the style used for simple fill is:

Given a 4-connected set A of points on the 2-dimensional integer
grid, all of the same tint t, and a distinguished point P in A of value
v, such that the value of any other point P’ in A is a monotonically
decreasing function of distance from P along at least one 4-
connected path of points in A from P to P’, given a tint t’≠ t, find an
algorithm for changing all and only the points of A from tint t to t’.

The TINTFILL procedure below resembles the FILL procedure above in or-
ganization, with TFILLINE, TSCANLO, and TSCANHI corresponding respec-
tively to FILLINE, SCANLO, and SCANHI. We continue to use the terrain anal-
ogy to indicate how the shadows of a scanline segment are scanned for tint fill.
Two points P and P’ on the same scanline will be said to be monotonically con-
nected if the values for all the pixels from P to P’, inclusively, monotonically in-
crease with x or monotonically decrease with x. Briefly, we stack the hilltops
which are in the shadow, or at least the highest point on a hill which falls in the

Digital Filtering Tutorial For Computer Graphics 9

shadow. These points are later popped from the stack and used as new seed-
points. Specifically, a point in a shadow is pushed if:

1) Its tint is that of the original seedpoint before filling, and
2) its value is less than or equal the value of the pixel above (below for

TSCANHI), and
3) there is no monotonically connected pixel to the right of higher value

that also satisfies 1) and 2) and is in the shadow, and
4) there is no monotonically connected pixel to the left of higher value that

has already been stacked.

Fig. 1 illustrates which pixels would be stacked under these rules. They are indi-
cated by upper case letters.

The algorithm below assumes the user supplies the coordinates of the initial
seedpoint and the desired new tint. We will employ two new data types, tint and
value, to hold color tint and color value. For the purposes of this presentation, we
need not be more specific about them. In the current implementation of tint fill at
NYIT for 8-bit frame buffers, both of these data types contain four bits. Special
colormaps are assumed which map the low four bits of a pvalue into the value
and the high four bits into the tint of the color of the pvalue. For RGB frame buff-
ers, tint and value are algorithmically computed [8] from the RGB primary com-
ponents.

procedure TINTFILL (seedx,seedy,newtint);
 integer seedx,seedy;
 tint newtint;
begin
 integer x,y,lx,rx,yref,lxref,rxref;
 tint newt,oldt;
 value oldv;

 x:=seedx; y:=seedy;
 newt:=newtint; oldt:=GETT; oldv:=GETV;
 if oldt=newt then return;
 yref:=y; PUSH;
 while STACKNOTEMPTY do begin
 POP;
 if GETT=newt then continue;
 TFILLINE;
 if HINEIGHBOR then TSCANHI
 else if LONEIGHBOR then TSCANLO
 else begin
 TSCANHI; TSCANLO;
 end;
 yref:=y; lxref:=lx; rxref:=rx;

Digital Filtering Tutorial For Computer Graphics 10

 end
end

These procedures assume utility subroutines GETT, GETV, and SETT as well
as the stack maintenance utilities used above. GETT and GETV return the tint
and value of the pvalue at current location (x,y). SETT changes the pvalue at cur-
rent location (x,y) to one with a tint of newt.

procedure TFILLINE;
begin
 value lastv;

 lastv:=oldv; TFILLRIGHT;
 lastv:=GETV; TFILLEFT;
end

procedure TFILLRIGHT;
begin
 SAVEX;
 while GETT=oldt and GETV<lastv and x<$right
 do begin
 SETT; lastv:=GETV; x:=x+l;
 end
 rx:=x-l; RESTOREX;
end

procedure TFILLEFT;
begin
 SAVEX; x:=x-l;
 while GETT=oldt and GETV<lastv and x>$left
 do begin
 SETT; lastv:=GETV; x:=x-l;
 end
 lx:=x+l;
 RESTOREX;
end

procedure TSCANHI;
begin
 if y+l>$top return;
 SAVEXY;
 x:=lx; y:=y+l;
 while x<rx do begin

Digital Filtering Tutorial For Computer Graphics 11

 while GETT ≠ oldt and x<rx do x:=x+l;
 if x>rx break;
 TPUSHHI;
 x:=x+l;
 end
 RESTOREXY;
end

procedure TSCANLO;
begin
 if y-l<$bottom return;
 SAVEXY;
 x:=lx; y:=y-l;
 while x<rx do begin
 while GETT ≠ oldt and x<rx do x:=x+l;
 if x>rx break;
 TPUSHLO;
 x:=x+l;
 end
 RESTOREXY;
end

The following two routines are the most complex of this presentation. They
are designed to stack all points in the shadow of the current scanline segment
which meet the four criteria listed above. It should be noted that correct tint fill-
ing would occur if only criteria 1) and 2) were satisfied. The set of points satisfy-
ing only these two criteria is the largest set of points that could be stacked for
correct operation of the algorithm. The set of points satisfying all four criteria is
the smallest set of points that must be stacked for correct filling. For ease of pres-
entation, the routines specified below stack a set of points falling between these
two extremes. Fig. 1 shows the set of points actually stacked. The upper case let-
ters indicate points in the smallest set, which must necessarily be stacked, and
the lower case letters denote the additional points stacked by these routines.

In the following routines, v is the color value of the current pixel, and vup
(vdn) is the value of the pixel just above (below). Four flags are used: Vover is
true only when a shadow pixel has a value larger than that of the corresponding
pixel in the scanline above (below). Oldvover is the state of vover at the location
considered just previously to the current location. Uphill is true only when, pro-
ceeding left to right along the shadow, the color values increase monotonically.
Stackready true implies points are to be pushed onto the stack. False implies re-
placement of the top of the stack. In words, the highest points on hillsides which
satisfy 1) and 2) are stacked.

Three more utility routines are assumed. These are GETVDN and GETVUP
which return the value of the pixel immediately below, respectively above, the

Digital Filtering Tutorial For Computer Graphics 12

current pixel. Routine RETOP replaces the top element on the stack with the cur-
rent location.

procedure TPUSHHI
begin
 integer vover,oldvover,uphill,stackready;
 value v,vdn;

 comment initialize flags;
 v:=GETV; vdn:=GETVDN;
 vover:=if v>vdn then true else false;
 if x=rx and not vover then begin
 PUSH; return;
 end
 stackready:=true;
 uphill:=false;

 comment stack the first valid point;
 if not vover then begin
 stackready:=false;
 PUSH;
 end
 else while x<rx do begin
 x:=x+l;
 if x>rx or GETT ≠ oldt then return;
 GETDNFLAGS;
 if not vover then begin
 PUSH;
 stackready:=false;
 break;
 end
 end

 comment main loop;
 while x<rx do begin
 x:=x+l;
 if x>rx or GETT ≠ oldt then return;
 GETDNFLAGS;
 if uphill and not vover then begin
 if not stackready then RETOP;
 else begin
 PUSH; stackready:=false;
 end

Digital Filtering Tutorial For Computer Graphics 13

 end
 else if not uphill then begin
 if not vover and oldvover then PUSH;
 stackready:=true;
 end
 end
end

GETDNFLAGS is the following flag maintenance routine:

procedure GETDNFLAGS
begin
 vlast:=v; v:=GETV;
 vdn:=GETVDN; oldover:=vover;
 vover:=if v>vdn then true else false;
 if v ≠ vlast then begin
 uphill:=if v>vlast then true else false;
 end
end

Procedure TPUSHLO is the same as TPUSHHI above if vdn is replaced eve-
rywhere with vup, GETVDN is replaced everywhere with GETVUP, and
GETDNFLAGS is replaced everywhere with GETUPFLAGS. GETUPFLAGS is
GETDNFLAGS under the same set of replacements used to obtain TPUSHHI.

Historical Note
The earliest version of the fill algorithm as stated here of which I am aware is

that of Ken Knowlton [1] in 1964. A less sophisticated algorithm was the founda-
tion of a fill program implemented on the “tricolor cartograph” in 1969 [2] and of
a similar program implemented by Joan Miller on a 3-bit frame buffer at Bell
Labs in 1969-70 [4]. These two programs could fill only convex simply-connected
areas. The first complete frame buffer program was apparently that implemented
by Patrick Baudelaire and Dick Shoup at Xerox Palo Alto Research Center in
1973. Programs realizing the fill, tint fill, and boundary fill algorithms have been
in service at NYIT since 1975. A similar program, called “flood” however [3,6],
was implemented at the Massachusetts Institute of Technology shortly thereafter.
More recently, Marc Levoy programmed an 8-bit fill at Cornell University. A 24-
bit, or RGB, version of fill and the tint fill program at NYIT were certainly the
first of these varieties with only tint fill being a truly novel program. The RGB
versions of fill anf tint fill were implemented in 1977 and 1978, respectively, at
NYIT. Most recently, Marc Levoy has implemented a 10-bit version of tint fill at
Cornell under the name “gradient flooding”.

Digital Filtering Tutorial For Computer Graphics 14

Implementation Notes
The actual implementation of any of the algorithms of this paper has to deal

with several practical matters glossed over by the presentation thus far. The
stack, for example, is unfortunately finite. It is possible to make pictures the fill-
ing of which, even with careful stack usage described, requires a stack to grow so
large as to exceed memory size. Since great speed is highly desirable in a fill pro-
gram, elaborate stack checks are undesirable. Fortunately, it has been our experi-
ence at NYIT that pictures which require such immense stacks are pathological
cases, created for the sole purpose of exceeding the limits and of little interest ar-
tistically.

Since speed is so important, all fill programs at NYIT have been imple-
mented as in-line assembly code, subroutine calls being too costly. The much
used 8-bit simple fill was implemented to fill two pixels (a word) at a time in-
stead of just one (a byte) to exploit the speed advantage of the Digital Equipment
Corporation PDP11 family of processors and the Evans and Sutherland frame
buffers in word mode. Although the connectivity checks are quite a bit more
elaborate in word mode, the resulting speedup was worth the coding trouble.
The tint fill program was speeded up substantially by checking for the case
where it must fill large full-value areas and doing the highly optimized simple
fill in that event.

Concluding Remarks
Tint fill is called by that name because of its original use at NYIT. However,

tint and value are only one possible interpretation of the two quantities checked
by the algorithm. Hue and brightness or hue and saturation are two other color-
related interpretations. But any two quantities, such that one is changed if the
other “only goes downhill” from the initial seedpoint, form another interpreta-
tion. For example, the contents of one frame buffer A is matted into another
frame buffer B just for those points in a third frame buffer C with absolute nu-
meric contents (weights) which only go downhill (decrease arithmetically) from
an initial seedpoint in C. The matting is done as a weighted combination of the
corresponding pixels in frame buffers A and B, the weight being the pvalue in C
at the same (x,y) location. A less colorful name for the algorithm, derived from its
terrain model explanation, would be “hill fill”.

As another example, consider an area of color1 in an RGB frame buffer sur-
rounded by an antirastered boundary of color2. We desire to fill the area with
color3 while maintaining the antialiasing at the edges. The hill fill algorithm can
be used under this interpretation: “Color1ness” is changed to “color3ness” if
“not-color2ness” only goes downhill from the initial seedpoint. In fact, an RGB
tint fill results if color2 is taken to be black.

Acknowledgement
Ed Catmull helped me a great deal with the fill and tint fill algorithms. In

particular, he emphasized the scanline orientation of algorithms and suggested
the “never go uphill” concept behind tint fill. Special thanks is due Dr. Alexander

Digital Filtering Tutorial For Computer Graphics 15

Schure, president of NYIT, for his strong support of graphics research and for the
Computer Graphics Lab, his creation.

References
1. Kenneth C. Knowlton, “The Beflix Movie Language”, in Proceedings of

the Spring Joint Computer Conference, 1964. (See also, Kenneth C.
Knowlton and Lorinda L. Cherry, “Fortran IV Beflix”, in Proceedings of
the UAIDE Annual Convention, San Diego, 1969.)

2. W. J. Kubitz and W.J. Poppelbaum, “The Tricolor Cartograph: A Display
System with Automatic Coloring Capabilities”, in Information Display,
November/December, 1969, pp. 76-79.

3. Henry Lieberman, “How to Color in a Coloring Book”, in Proceedings of
the Fifth Annual Conference on Computer Graphics and Interactive
Techniques (Siggraph 78) August 21-25, 1978, pp. 111-116.

4. Joan E. Miller, personal communication, Bell Labs, Murray Hill, N.J., July
1978.

5. Theodosios Pavlidis, “Filling Algorithms for Raster Graphics”, in Pro-
ceedings of the Fifth Annual Conference on Computer Graphics and In-
teractive Techniques (Siggraph 78), August 21-25, 1978, pp. 161-166.

6. Craig Reynolds, “Filling Polygons”, in Architecture Machinations, De-
partment of Architecture, Massachusetts Institute of Technology, Room 9-
518, May 3, 1977.

7. Azriel Rosenfeld, “Connectivity in Digital Pictures”, in JACM 17:146-160,
January 1970.

8. Alvy Ray Smith, “Color Gamut Transform Pairs”, in Proceedings of the
Fifth Annual Conference on Computer Graphics and Interactive Tech-
niques (Siggraph 78), August 21-25, 1978, pp. 12-19.

9. Alvy Ray Smith, “Paint”, Technical Memo No. 7, Computer Graphics
Lab, NYIT, Old Westbury, NY 11568, July 1978.

10. Garland Stern, “SoftCel—An Application of Raster Scan Graphics to Con-
ventional Cel Animation”, in these Proceedings.

Digital Filtering Tutorial For Computer Graphics 16

Fig. 1. Only Points A, B, C, D, a, and b of the shadow would be stacked in tint fill.

Digital Filtering Tutorial For Computer Graphics 17

Fig. 2. Before and after two uses of boundary fill.

Digital Filtering Tutorial For Computer Graphics 18

Fig. 3. First few steps of a simple fill. Black dotted points are stacked.

Digital Filtering Tutorial For Computer Graphics 19

Fig. 4. First few steps of a tint fill. Black dotted points are stacked.

