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Pattern recognition by parallel devices is investigated by studying the formal
language recognition capabilities of one-dimensional cellular automata. The precise
relationships of cellular automata to iterative automata and to Turing machines are
established: In both cases, cellular automata are inherently faster. The relationship
of context-free languages to the languages recognized in real time by bounded cellular
automata is detailed. In particular, nondeterministic bounded cellular automata can
recognize the context-free languages in real time. The deterministic case remains open,
but many partial results are derived. Finally, closure properties and cellular automata
transformation lemmas are presented.

1. INTRODUCTION

The cellular automaton model, defined in the following section, has been used by
several theorists [1, 2, 6, 7, 19] for proving the existence of nontrivial self-reproducing
computing machines. All these proofs employ the step-by-step simulation of a universal
Turing machine, the most serial computer model, by a cellular automaton, a highly
parallel computer model. A primary purpose of this paper is the exploitation of the
inherent, but neglected, parallelism of cellular automata. This purpose is effected by
treating the cellular automaton as a pattern recognizer. Specifically, attention is focused
on one-dimensional pattern recognition, with formal languages as the classes of
patterns recognized. Speed of recognition is emphasized throughout to make it clear
that a cellular automaton is not just another recognition device for well-known
languages but is, in fact, a fast recognition device.

A formal definition of a cellular automaton is presented in the next section.
Intuitively, however, a cellular automaton is an array of identical finite-state Moore
machines, called cells, which are uniformly interconnected. At time ¢ = 0, it receives
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a spatial pattern of inputs, called an initial configuration. The temporal sequence of
configurations of states of the array generated autonomously after ¢ = 0 is, in general,
the object of interest. Each configuration in a sequence is the image of a function, the
global transition function, of the preceding configuration, with only one such function
associated with a given cellular automaton. Thus cellular automata are a subclass of the
tessellation automata [25], each of which may have a set of global transition functions.

To make the observation of configurations generated by a cellular automaton
effective, various finiteness conditions are imposed. For example, an initial configura-
tion may be required to have only a finite number of nonquiescent cells, where a
quiescent cell is a cell in a specially designated state, the quiescent state. Here the
condition will be that an array contain only a fixed number of cells from ¢ = 0 onwards
which may be nonquiescent. In one dimension, these bounded cellular automata are
the bilateral iterative networks of Hennie [13] with a unit delay between each two
adjacent cells. The paper of Kasami and Fujii [15], written in the terminology of
iterative networks, is closely related to the work here.

Another closely related reference is Cole [9], which presents an alternate parallel
computer model, called an iterative automaton. An iterative automaton is also a
uniform array of identical cells but is not autonomous, receiving a temporal input
pattern at one specially designated input—output cell. The temporal sequence of outputs
generated by this one cell is the object of interest. Bounded cellular automata will be
shown to be inherently faster than iterative automata.

2. DErrFINITIONS AND Basic LEmMAS

The abbreviation » — D is used to mean n-dimensional. The 1 — D case will be
the usual case and should be assumed unless otherwise indicated.

A finite-state machine (FSM) is a 5-tuple (X, Y, O, f, g) with X, ¥, and Q all finite,
nonempty sets called inputs, outputs, and states, respectively. The next-state function
is f: O X X—20and g: QO — Y is the output function. A cell is an FSM (0%, 0, 0, §, iy),
denoted (Q, 8), where 7, is the identity on set Q. If the range of f for a given FSM be a
set composed entirely of singletons, then the FSM is said to be deterministic, else
nondeterministic. The prefix D shall be used throughout to denote the deterministic
special case. Thus, for example, a DFSM is a deterministic FSM. Furthermore,
singletons will be denoted by their single element—e.g., {6} will be abbreviated .

Let C = (0Q, 9) be a given cell. Then a cellular space, or cellular automaton, Z is an
assignment of one copy of C to each integer point on the real line such that the input
to cell 7 (i.e., the copy of C at point ¢ € , the integers) is the output pair from cells
i— 1 and 7 + 1, for all 7. If C is nondeterministic (deterministic), then Z is non-
deterministic (deterministic). C is said to be the cell of Z. Cells i — 1,7, and 7 + 1 form
the neighborhood of cell i. Cells 7 — 1 and ¢ + 1 are the neighbors of cell ¢. It has been
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shown that there is no loss of generality in assuming the 3-cell neighborhood adopted
here [9, 21]. Denote Z by the triple (O, 8, g,), where Q is called the state set of Z, § is
called the local tramsition function of Z, and g, is the quiescent state of Z with the
property 8(qo » ¢o » o) = o - It is convenient to rearrange the domain of & so that
8(x, v, %) is always the state of cell 7 at time # 4 1 if cells  — 1, 4, and 7 - 1 are in
states «x, 7y, and 2, respectively, at time .

All cells in a cellular space Z are assumed to change state simultaneously. Thus a
global transition function A can be defined for Z as the simultaneous application of &
at all cells in Z. Formally, let a configuration ¢ be an assignment of states from Q to each
cell in a cellular space—i.e., é&: I — Q. Then, for y the set of all configurations in Z,
A:y —x is defined by [4(&)](z) = 8(¢( — 1), £(3), ¢ + 1)). A cellular space is
operated as follows: An arbitrary configuration is assumed at time ¢ = 0, an initial
configuration, and the sequence of configurations which occurs autonomously by
repeated applications of 4 is observed. This is in contrast to the operation of an
iterative automaton defined next.

An dterative automaton [9] is a cellular space with cell 0, the distinguished cell,
augmented by an extra input, the external input, and an extra output, the external
output. That is, the distinguished cell is an FSM (Q? x X', Q0 X Y, Q, &, B') with
B'(g) = (g, »)- For convenience, let B, give the second element of §'—i.e., 8;'(g) = »-
All other cells are as defined for a cellular automaton. An iterative automaton is
nondeterministic if either its cell or its distinguished cell is nondeterministic, else it
is deterministic. An iterative automaton is operated as follows: All cells, including
the distinguished cell are assumed to be quiescent (i.e., in state o) at ¢ = 0. A temporal
sequence of inputs from set X’ is applied to the external input of the distinguished
cell and the sequence of outputs from set ¥ are observed at the external output of the
distinguished cell.

Both cellular and iterative automata may be employed as language acceptors. The
following definitions explain this mode of operation for each device.

DerINITION 1. A bounded cellular space (BCS), denoted by the 4-tuple (X, O, 8, b),
is a cellular space (Q, 8, g,) restricted as follows:

(1) b€Q is a specially designated boundary state;
(2) X CQ, =0 — b is the initial alphabet;
(3) (g, ¢", ¢") = bif and only if ¢" = b, for arbitrary g and ¢’ in O;

(4) two and only two cells, the boundary cells, are in state b at time ¢ = 0.

Thus, although a cellular space is of infinite length, a bounded cellular space may be
considered finite because the states of the cells between and including the boundary
cells are independent of the states of all other cells in the cellular space. This is a
consequence of the definition of the boundary state 5, which does not permit the
creation or destruction of a boundary cell after ¢ = 0, and of the 3-cell neighborhood.
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Therefore, a retina for a BCS, the cells between but not including the two boundary
cells, is fixed for all time after ¢ = 0. All cells other than the boundary cells and the
retina may be assumed quiescent. The retina is the pattern processing portion of a
BCS, where a pattern is a configuration restricted to the retina. In general, for a finite,
nonempty set I, W* denotes the set of all finite strings formed from concatenations of
elements of ¥ and includes the empty string e. Hence a pattern is an element of O, *.

DEFINITION 2. The pattern transition function for a BCS Z = (X, Q, §,b) is
the function F: Q,* — (2%)* such that

F(QIQ2 Qn) = S(b’ q1> Q2) 8(Q1 » G2 s Q3) 8(?%—2 » Qn-1 > Qn) S(Qn—l » dn s b)

and F(¢) = e, for n the number of cells in a retina of Z. Let F* denote # successive
applications of F to a pattern.

DerFINITION 3. Let R: (2%)* — 29 be the extraction function which extracts the
present states of the rightmost cell, the accept cell, in a retina: R(Q,0, - Q,) =, and
R(e) = b.

DeriNiTION 4. A BCSZ = (X, 0,6, b) is said to accept the language L T X*
(on A) if, for arbitrary x €L, there is a time ¢ such that R(F'(x)) N A = ¢, where
ACQ is a set of accept states disjoint from X. A BCS used in this manner will be
denoted by the 5-tuple (X, O, 8, b, A) and called a BCS acceptor. Z is said to recognize L
if it accepts L on 4, and accepts L' = X* — L on A4,, where A, N 4, = ¢. If Z
recognizes L, then it rejects L'. Such a Z is called a BCS recognizer.

A 1 — D language-accepting device is said to accept (recognize) a language L within
time T(n) if, for any x of length n, it can determine that x € L (that xeL or x € L")
within 7'(n) steps, where T: N — N is a total time function on the positive integers.
T(n) = n is called real time; T(n) = cn, ¢ a constant, is called linear time.

DerINITION 5. L is a BCSS language if there is a BCS acceptor Z = (X, Q, 8, b, 4)
such that L = L(Z) = {x € X* | @t)[R(FYx)) N A # $]}. Similarly, L is a BCS
predicate if it is recognized by some BCS recognizer. A linear-time BCS language
(predicate) is a BCS language (predicate) which is accepted (recognized) within
T(n) = cn. If ¢ = 1, then the language (predicate) is said to be real-fime.

Thus a string is accepted by a BCS if, when embedded between two boundary
cells in some BCS acceptor at ¢ = 0, action of the pattern transition function causes
the accept cell to pass eventually into a set of states including an accept state.

Drrinrrion 6. Consider an iterative automaton IV with a set 4 C Y’ of accept
states and external input alphabet X’ = X U 0, where 0 ¢ X. Then V is said to
accept x,%, - &, € X* if thereis a time ¢ > n such that 8,'(8'(q1 , (g2 » %4), ¢5)) N A #
and the external input string has been xxp -+ %, - %, %, =0 forn 1 <7 < &
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Here & is generalized to subsets of 2 and its arguments are rearranged in accordance
with the previous treatment of & for BCS. A language L C X* is accepted by V' if
V accepts all strings x € L. Such a V' is called an iterative acceptor, and if t = n, then
it is called a real-time iterative acceptor. The set of all strings on X accepted by iterative
acceptor ¥ is denoted L(7’) and said to be the language accepted by V.

DEFINITION 7. A bounded iterative automaton V is an iterative automaton restricted
as follows:

(1) be€Qisaboundary state:

() (g, ¢", ¢') = b if and only if ¢" = b, for arbitrary g and ¢’ in Q;

(3) att =0, two and only two cells, cell 7 and cell j, are boundary cells (i.e., in
state b) with7 < Oand j > 0.

If —{ = j = n 4 1 for each string ®;&, -~ %, in L(V'), then V is called a real-space
iterative acceptor.

Hence a real-space iterative acceptor has the same memory size as a real-time
iterative acceptor. Since the addition of boundary cells at positions 7 +- 1 and —(n + 1)
in a real-time iterative acceptor will not alter its computation, a real-time iterative
acceptor is taken to be a real-space iterative acceptor.

A third class of machines, of secondary importance to this paper, are the multitape
nondeterministic Turing machines described informally below. A formal definition
appears, for example, in [5]. An m-tape on-line Turing machine (TM) T operates as
follows: At ¢ = 0, the finite-state control head of 7' is in a given initial state and
scanning the leftmost nonblank symbol of the input tape, which contains a string @
from given alphabet 2. All other tapes, the m working tapes, are blank. At each step,
T nondeterministically changes the scanned symbols on its working tapes, moves one
square right, left, or not at all on each working tape independently, moves one square
right on its input tape, and changes the state of its control head. The language accepted
by T is the set of all input tapes w € Z* for which 7' may halt eventually in some
predesignated final state with all working tapes blank. The languages accepted in real
time by m-tape on-line TM are the quasirealtime languages [5].

Two classes of machines are said to be equivalent if they accept precisely the same
class of languages. A general knowledge of formal language theory, associated automata,
and terminology is assumed [1, 14].

The following lemma is a basic cellular automata theory result and will be used
frequently in the sequel. Here and throughout the paper, a” will denote a string of »
copies of the symbol a.

Tue FIRING-SQuaD LEvMA [24].  There is a DBCS Z = (Q, 8, b) with specially
designated states ¢, $ € O and quiescent state O such that F'(0"~'¢) = $" for t = 2n — 2
and [FH(0n=1¢)] (3) # $ for 0 < t < 2n — 2 and for all i € I in the retina.
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In the terminology of the firing-squad literature, this lemma says that a general,
at the right end of a line of soldiers initially at rest (0), issues a command (¢) to fire.
After an elapsed time of precisely twice the number of soldiers, all soldiers and the
general fire (§) simultaneously and none fires before this time. The general could also
be at the left end of the line. In fact, it has been shown [18, 23] that he can be anywhere
in the line with no loss in time.

It is known that 2z — 2 is the minimum possible time to fire for a firing squad.
Hence the firing squad transformation is accomplished in linear time. The next lemma
can be used to speed up linear time to almost real time. It is the speed-up lemma for
BCS [4]. Closely related are the speed-up theorems of cellular automata [21] and
iterative acceptors [9]. All these theorems are based on the obvious fact that if the
information originally held in several cells is packed into one cell, then the cell can
process that information more quickly because the time required for accessing it has
been reduced. The speed-up is not a strict increase in speed by a constant factor
because on the order of # time units are required to perform the initial packing.

Tue Speep-Up LEmMA. Let k be an arbitrary positive integer. For an arbitrary
DBCS acceptor Z = (X, 0, 8, b, A) with | Q | = r, there are a constant ¢ and a DBCS
acceptor Z' = (X, 0, 8, b, A) with | Q' | = cr® such that, if Z accepts language L
within time T(n), then Z' accepts L within time (T'(n)/k) 4 n.

In particular, if Z accepts L within linear time, then there is a Z” which accepts L
within 7'(n) = (1 ++ e)n, € > 0, or almost real time. Unfortunately the cost of a
speed-up by a factor of %, in terms of the size of the state set, increases exponentially
with %. Hence this paper concentrates on exactly real-time results with only occasional
resort to the speed-up lemma.

3. LANGUAGE-RECOGNITION RESULTS

Levma 3.1.  The class of BCS languages is equivalent to the class of context-sensitive
languages (CSL)).

CoroLLarY 3.1.1 [15]. The class of DBCS languages is equivalent to the class of
DCSL.

The lemma follows from a straightforward simulation of a linear-bounded automaton
(LBA), as defined in [16] for example, by a BCS, and vice versa. There are two ways
to simulate an L. BA by a BCS. The first, easily employed here, is to embed the LBA
tape in the BCS with the boundary cells as endmarkers. Then the movement of the
head along the stationary tape is simulated by “movement” of a simulating state from
cell to cell in the BCS. A nondeterministic move is accomplished in two steps: (1) a
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nondeterministic choice is made, and (2) the result of (1) is deterministically simulated.
The other simulation method [8] assumes the head is stationary and “moves” the tape
beneath it. This latter technique will be used in the proof of Theorem 3.8. The details
of the simulations for the proof of Lemma 3.1 are left to the reader. It is well known
that the CSL (DCSL) are precisely the languages accepted by LBA (DLBA).

Hence pattern recognition by cellular automata reduces to problems in the theory
of context-sensitive languages. The same is true, in a sense which is made precise
below, for iterative acceptors.

The next proof is the first of several in this paper which utilize a space-time diagram
as a heuristic aid. The device is not original, having been used successfully, for example,
by Waksman [24] and Fischer [10]. It consists of a 1 — D cellular machine arrayed
across a page (the space dimension) and lines directed down the page (the time
dimension), proceeding away from the cellular array at angles of at least 45°. See
Fig. 1. These lines represent the flow of state information in the array. 'The units in

o

x|
X2
X3
Xy
Xsg
X6
0

Fic. 1. Space-time diagram for Lemma 3.2.

each dimension are such that a 45° line represents a flow of information at the rate of
one cell per time step, unit speed.

An informal programming language is helpful in discussion of space-time diagrams.
A g-cell is a cell in state ¢ € Q at t = 0. A g-pulse propagating right (left) at (1/k) unit
speed from a g-cell is represented by a line of slope —£ (&), 2 > 0 an integer, originating
from each g-cell. It carries the information that the g-cell was in state ¢ at £ = 0 to
other cells in the array, and compiles, for ““don’t care” states (—), into 6(—, g, —) = ¢V,
8(—, ¢v, —) = ¢?,..., 8(—, ¢*?, —) = gD, (g, —, —) = q. The last entry
is replaced by 8(—, —, ¢*~V) = g for a left-propagating pulse. In either case, the cell
is said to have sent the pulse. Two pulses are said to collide if their lines, in a space—time
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diagram, intersect. For, say, a p-pulse propagating right at unit speed and a g-pulse
propagating left at unit speed, this notion compiles into (1) 8((p, —), —> (—» 9)) =
(p, ), for a p-cell an even distance from a g-cell, or (2) 8((p, —), (¢, =) —) = (&, q)
for an odd distance, where each state is given two coordinates, or channels, for
distinguishing pulses. A g-pulse is annihilated if it ceases to propagate after a collision.
A g-cell (q-pulse) maintaining its position is represented by a line proceeding down the
page—i.e., with infinite slope. A pg-boundary is a p-cell, with a g-cell as right neighbor,
maintaining its position. A right (left) propagating g-pulse is reflected by a p-cell
at (1/k) unit speed if a g-pulse is annihilated by collision with a p-cell and a g-pulse is
sent left (right) at (1/&) unit speed from the p-cell at the time of collision.

LemMa 3.2. The class of languages accepted by (deterministic) BCS s accepted by
(deterministic) real-space iterative acceptors.

Proof. A BCS can be simulated—in its language-accepting mode—by an initially
quiescent iterative acceptor as follows. Let g, be the quiescent state of the iterative
acceptor. An initial pattern x,x, *** %, for the cellular space is input temporally into the
distinguished cell of the simulating iterative acceptor, leftmost symbol x; first. Each
symbol is shifted left until the entire input pattern is arrayed spatially in the cells of the
iterative acceptor as indicated in Fig. 1. As each w; enters the distinguished cell, it is
sent left at 1/2 unit speed as an x;-pulse. The first 0 input to the distinguished cell is
sent left as a O-pulse propagating at unit speed. As each x;-pulse collides with the
0O-pulse, it is reflected one cell to the right, where it creates an x;-cell which maintains
position. The collision of the 0-pulse with the left b-cell causes the creation of a
command-to-fire signal ¢ as in the firing squad lemma. This initiates a firing squad
consisting of the n x,-cells. When the firing squad fires ($), all x;-cells simultaneously
begin to function exactly like the cells of the simulated BCS. If the BCS would accept
the initial pattern, then its accept cell would enter an accept state. But by the input
procedure above, the simulated accept cell is the distinguished cell of the iterative
acceptor. Q.E.D.

Levma 3.3. For an arbitrary (deterministic) iterative automaton, there is a
(deterministic) cellular space which simulates it in real time.

Proof. 'The input string x,x, *** &, to the simulated iterative automaton is embedded
one symbol per cell in the simulating cellular space so that the nonquiescent part of the
initial configuration is @a,, *** %,%,@, where @ is a special marker state. The right
marker state also serves to designate one cell in the cellular space as the simulated
distinguished cell of the iterative automaton. Then the input string is shifted one
symbol at a time, at unit speed, into the right @-cell. Besides being capable of this
shifting operation, each cell is also able to simulate a cell in the simulated iterative
automaton. That is, the states of each cell consist of three channels, the first for
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shifting the input string, the second for simulating the iterative automaton, and the
third for holding the output string as it is shifted left out of the cell simulating the
the distinguished cell at unit speed. Q.E.D.

TueoreM 3.4. The class of (deterministicy BCS is equivalent to the class of
(deterministic) real-space iterative acceptors.

Proof. The converse of Lemma 3.2 is required, but only slight modification of the
proof of Lemma 3.3 is necessary for this goal. Clearly, Lemma 3.3 is true for iterative
acceptors as a special case of iterative automata. Specifically, the left and right @-cells
in the proof become the boundary cells. The simulating cellular space is supplied
with three channels. One is used for shifting the input into the right boundary cell, the
second simulates the 7 cells to the left of the distinguished cell, and the third simulates
the 7 cells to the right of the distinguished cell. Q.E.D.

CoROLLARY 3.4.1. If an arbitrary (deterministic) iterative acceptor accepts language L
within time T(n), then there is a BCS (DBCS) which accepts L within time T'(n).

The next theorem states that the converse of Corollary 3.4.1 is false and makes
explicit the difference in computing speeds between cellular spaces and iterative
acceptors. However, a lemma must first be proved. Let a palindrome in X* be a word
of the form wwR, where w € X* and R is the string w written in reverse order. The set
of palindromes has been shown [9] to be a real-time iterative acceptor language and is
hence a real-time DBCS language by Corollary 3.4.1. Lemma 3.5 below says more and
uses a different and very simple proof technique (see also [11]).

LemMaA 3.5. L, = {wwR |we X*, | w| > 1} is a real-time DBCS language; so are
L, =L, X*and Ly = X*L,.

Proof. Consider the space-time diagram of Fig. 2. Each cell sends its state to the
left and right at unit speed. The center cell of the array is determined by the collision
of the two boundary pulses sent by the boundary cells. Each cell acts as if it were the
center cell (the right cell of the two center cells if # is even) of a palindrome. Should a
p-pulse and a g-pulse, p 7 g, ever collide at cell ¢ then that cell goes into a special
state, say #, signifying that cell 7 cannot be the center cell of a palindrome, and it
remains in that state. The b-pulse sent by the right boundary cell acts as a “collection”
pulse, which reflects from the center cell of the pattern to the right boundary at unit
speed. Suppose it is required that this pulse send an accept state as a pulse to the right
if and only if it finds a non-# center cell at the center of the given pattern. Then Z;
has been designed such that L, = L(Z,) is accepted within real time. But suppose the
collection pulse is required to send an accept state to the right if and only if it finds at
least one non-# cell before, or as, it collides with the center cell of the pattern. Then
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Fic. 2. Palindrome recognizer.

real-time acceptor Z; has been designed such that Ly = L(Z;). If the collection pulse
were instead the other boundary pulse, and if it acted just as does the collection pulse
of Z, , then Z, , the real-time acceptor of L, , has been designed. Q.E.D.

TuEOREM 3.6. There is a context-free language, not accepted within real time by
any deterministic iterative acceptor, which is a real-time DBCS language. (Hence DBCS
are inherently faster than deterministic real-space iterative acceptors.)

Proof. Consider the language X*Lj, where L] = {wwR | we X* | ww® | > 3.
Cole [9] has proved that no deterministic real-time iterative acceptor (of any dimension)
can accept X*L7. A simple finite-state machine added to each cell in Z; of Lemma 3.5
yields Z; which accepts X*L{ in real time. Q.E.D.

Remark. Although the result stated in Theorem 3.6 is never explicitly mentioned,
Kasami and Fujii [15] essentially prove it based on an equivalence-class counting
argument. In fact, they essentially prove the stronger result: The linear deterministic
context-free language

L = {du,, du,,_y - duycv, dvyd -+ v,d | u,R = w05, u; , v;, w; € X* C(X U {c, d})*

is a real-time DBCS language but not a real-time iterative acceptor language.

Tueorem 3.7.  Thereis a contexi-free language, not recognized within time T(n) = cn?
by any one-tape off-line deterministic Turing machine, which is a real-time DBCS language.
(Hence DBCS are inherently faster than single-tape Turing machines.)
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Proof. A one-tape, one-head deterministic Turing machine M cannot recognize
L = L, U {wdw® | w e X*, d € X} within square time, where L, is as in Lemma 3.5.
That is, for any such M which recognizes L, there is a constant ¢ such that /M does not
recognize L within time T'(n) = cn?[1, 3]. But L is a real-time DBCS language by
simple modification of the scheme used for recognizing L, in Lemma 3.5. Q.E.D.

These results suggest the following interesting, and as yet unsolved, problem: Are
the context-free languages a subset of the real-time DBCS languages ? It is not difficult
to show that they are a subset of the real-time BCS languages.

TuroreM 3.8. The quasirealtime languages are real-time BCS languages.

Proof. 'The quasirealtime languages are precisely the languages accepted in real
time by nondeterministic on-line multitape Turing machines. Cole [8] has shown how
to simulate a deterministic off-line multitape Turing machine with a deterministic
iterative acceptor in real time. A technique very similar to his is described briefly
below. It is easily adapted to the on-line nondeterministic case. Then the theorem
follows from Corollary 3.4.1.

A deterministic iterative acceptor V' simulates a one-tape off-line deterministic
Turing machine M as follows: The distinguished cell simulates, at all times, the head
of M, the scanned square on the tape of }, and the two squares on either side of the
scanned square. All other cells simulate two consecutive squares on the tape. Thus an
instantaneous description of M such as ... ®_gh_sX ¥ g% oX_1G¥q¥;¥oXgXa¥5Xs - is
represented in V' by the following configuration at time ¢ (semicolons separate the
contents of distinct cells and parentheses enclose contents of the distinguished cell):

. . 3 r ’ . . .
v} X_gX_gy ¥_g¥_g; (X_g¥ 3%, ¢ %1, @Xs); X3Xy5 X5Xg5 vens

where ¢’ and x, are the new state and new symbol, respectively. Special state coordinate
@ propagates right at unit speed causing each simulated tape symbol to move left one
position. Simultaneously, the excess symbol x,’ causes a pulse to propagate left at unit
speed which forces each simulated tape symbol to move left one position. Thus the
configurations at times ¢ + 2 and 7 - 3, assuming that no further state changes by M
are simulated, are as shown below:

° oy . ’ 4 . . .

v} XX gy X_g%_gX_g3 (X_%s ¢'% Xo%s); @Xy5 X5Xg5 +or
. . . ’ ’ . . 0

e} XXXy} X_g¥_3 (B_y%0’, @'%y 5 X5X3); X4%55 @ --e -

Since the changes indicated above propagate away from the distinguished cell at unit
speed, it is not necessary for the distinguished cell to wait for the simulated tape to be
completely shifted before continuing its simulation of M. In fact, it is clear that V' can
simulate M in real time, using an analogous technique for a left move as used in the
demonstration above for a right move.
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Since the simulated head cell remains fixed and the simulated tape moves beneath
it the technique can also be used for a multitape machine. Furthermore, since a
nondeterministic move by M can affect only one cell in a simulation by V, the
distinguished cell, then the generalization of the technique to the nondeterministic
case is immediate with no loss in the speed of simulation, or real time. However, the
technique requires the input be “packed,” two symbols per cell (except for the
distinguished cell which requires five symbols). Unfortunately, this packing requires
time on the order of # [4]. For the case of an on-line TM, it is now shown that packing
can be carried out while the simulation occurs and, hence, the entire simulation
requires only real time.

But the read-only input tape of the simulated on-line machine need not be packed
since it simply moves left at unit speed into the distinguished cell. Since the working
tapes are initially blank, the simulated working tapes may be assumed to be already
packed, two blanks per cell, at ¢ = 0. Q.E.D.

CoroLLARY 3.8.1. The jfollowing are quasivealtime and hence real-time BCS
languages [5]: (1) the context-free languages, (2) the real-time definable languages, (3) the
nondeterministic real-time storage languages, (4) the real-time counter languages, and (5)
the languages generated by linear-time grammars.

In contrast, there is the following result.

THEOREM 3.9. There is a context-free language, not recognized within real time by
any multitape Turing machine, which is a real-time DBCS language.

Proof. Hartmanis and Stearns have shown [12] that the language
L = {yxdy'sR | x {0, 1}*; 5,9 €e U {0, 1, d}*d}

cannot be recognized by a multitape Turing machine in real time. A DBCS Z is now
illustrated which accepts L in real time. Consider Fig. 3.

Each cell sends a g;-pulse containing its initial state g; right and left at unit speed.
Should two d-pulses collide at cell 7, then cell ¢ begins to act as if it were the center cell
of a palindrome as in the proof of Lemma 3.5. Should a d-pulse propagate to or through
cell 7, then cell 7 ceases to check for palindromes. Should a d-pulse (or b-pulse) collide
with the right b-pulse at cell 7 while cell 7 is checking for palindromes, then the b-pulse
checks for a non-# at cell ¢ (i.e., for existence of a palindrome). One such non-#
before or at the collision of the left and right 4-pulses is sufficient for propagation of an
accept state to the right.

The form wdxR is a special case of L which Z must accept. For this case, have each
d-cell also act as a center cell of a palindrome. Should a d-pulse ever propagate to or
through such a cell, then it ceases checking for palindromes. However, should a
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Fic. 3. Multitape language recognizer.

d-pulse (or b-pulse) and the right b-pulse ever collide at such a cell while it is checking
for palindromes, then the b-pulse checks for a non-# just as above. Q.E.D.

Kasami and Fujii [15] have shown that the context-free languages are a proper
subclass of the DBCS languages. Their real-time results are summarized in the
theorem below (see also [20], where the languages accepted by deterministic pushdown
automata without e-moves are called e-free deterministic context-free languages.

TuroreM 3.10. (1) The Linear context-free languages are real-time DBCS languages.
(2) The e-free deterministic context-free languages are real-time DBCS languages.

A corollary to case (1) is immediate from Lemma 3.3 and the speed-up lemma for
iterative acceptors [9].

CoroLLARY 3.10.1. Any linear context-free language can be accepted within T(n) =
(1 + €)m, € > 0, by a deterministic real-space iterative acceptor.

Kosaraju [17] derived the closely related results: Deterministic iterative acceptors
accept the context-free languages within T'(n) = (1 + ¢)n?; deterministic iterative
acceptors, generalized to two dimensions, accept the context-free languages within
T(n) = (1 + en.

In comparison to case (2) of Theorem 3.10, there is the result below.
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TueoreM 3.11. There are inherently ambiguous context-free languages which are
real-time DBCS languages. Hence there are nondeterministic context-free languages which
are real-time DBCS languages.

Proof. L = {a’bic*|i =f or j =k} is an inherently ambiguous context-free
language. L is also a real-time DBCS language as is shown by constructing real-time
DBCS acceptor Z such that L = L(Z). Consider Fig. 4 which illustrates a DBCS Z; for

Blo \Ib |I~C IB

Fic. 4. Recognizer for {a’bic’}.

accepting {a*h’c’}. To avoid confusion, let B be the boundary state here. The Ba,
ab, bc, and ¢B boundaries are specially marked and maintain position. The ¢B-bound-
ary sends a pulse left at unit speed checking for all ¢’s. Each ab-boundary sends a
pulse right at unit speed checking for all #’s. Should an ab-boundary pulse collide with
the ¢B-boundary pulse at a bc-boundary, having seen only &’s and ¢’s respectively,
then form &%cB is guaranteed. The ab-boundary pulse carries this information to the
accept cell. Meanwhile, each cell initially in state a sends a pulse right at unit speed.
The collision of the ab-boundary pulse with the accept cell causes the accept cell to
begin checking for the arrivals of only a-pulses until the left boundary pulse arrives.
Should this condition occur then Z; accepts.

Z, is constructed to accept {a’h’c*} by the scheme illustrated in Fig. 5, where the
dashed lines are ignored in this proof. All boundaries maintain position as in Fig. 4.
Each be-boundary sends a pulse left at unit speed checking for all #’s. The Ba-boundary,
if it exists, sends a pulse right at unit speed checking for all a’s. Once the Ba-boundary
and be-boundary pulses collide at an ab-boundary, having encountered only a’s and
b’s respectively, the Ba-boundary pulse continues right checking for all &’s, a collision
with a be-boundary, and finally all ¢’s until collision with the right boundary. Should
this condition occur, then Z, accepts.
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Bla_ NEE lc 418

Fic. 5. 1-D French-flag recognizer.

In Section 4, the real-time DBCS languages are shown to be closed under union.
Hence Z is guaranteed such that L(Z) = L(Z;) U L(Zy). Q.E.D.

Lemma 3.12. L, = {ww | w e X*} is a real-time DBCS language.

Proof. Cole [9] has demonstrated an iterative acceptor which accepts L, in real
time. The lemma follows from Corollary 3.4.1. Q.E.D.

LemMa 3.13. Ly = {a™b™c™ | m > 1} is a real-time DBCS language.

Proof. Reconsider Fig. 5, but with the dashed lines. Pulses are propagated as
described in the proof of Theorem 3.11. In addition, each ab-boundary sends a pulse
to the right at 1/2 unit speed checking for all 8’s, and each ¢B-boundary sends a pulse
left at 1/2 unit speed checking for all ¢’s. Should the ¢B-boundary pulse, if it exists,
collide with an ab-boundary pulse at a bc-boundary, then the form b%¢'B is guaranteed.
Furthermore, should it collide with the Ba-boundary pulse, which has determined the
existence of the form Ba’b?, at the same bc-boundary, then the form Ba™b™c™B is
guaranteed and an accept pulse is sent right at unit speed. Q.E.D.

LeMMA 3.14. Ly = {a™ | m is prime} is a real-time DBCS language.

Proof. Let s;5, -+ 5; - be the characteristic sequence of the primes—i.e., §; = 1
if 7 is prime and s; = O otherwise. Fischer [10] has shown that this sequence can be
generated in real time by a deterministic iterative automaton, say V. Design Z to
accept Lg as follows: Let Z simulate V, as in Corollary 3.4.1, with the accept cell
simulating the distinguished cell of 7. Simultaneously, have the left boundary cell
send a pulse to the right at unit speed checking for all @’s. If the simulated distinguished
cell of 7 generates a 1 just as the b-pulse arrives from the left, then Z accepts. Q.E.D.
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Turorem 3.15.  There exist real-time DBCS languages which are not context-free.
(Hence the intersection of the real-time DBCS languages and the context-free languages
s a proper and nonempty subset of the former.)

Proof. L,,L,,and L, of Lemma 3.5 are context-free, but L, of Lemma 3.12, L; of
Lemma 3.13, and L of Lemma 3.14 are not context-free. Q.E.D.

The following special class of real-time DBCS context-free languages has become a
useful tool for studying two-dimensional pattern recognition [22].

TreoreM 3.16. A Dyck language is a real-time DBCS language.

Proof. Let D bethe Dyck language on alphabet X = {a; , @5 ,..., @y , b1, bg 5., b}
That is, if each a;, 1 <7 < m, is one type of left parenthesis and if each b, is the
right parenthesis corresponding to a;, then D is the set of all well-formed strings of
parentheses in X. Consider Fig. 6 for designing DBCS Z to accept D in real time. Each

a,a,a, Glb}bl o|b| b2c2b2b2

bl LI LTI 1] ]b

\ %

Fi1c. 6. Dyck language recognizer.

cell in Z is given two channels—i.e., each state is an ordered pair. Each left (right)
parenthesis @, (b;) is propagated to the right (left) at unit speed via the left (right)
channel. Should a left channel ever contain an a; while the corresponding right channel
contains b, , then the left and right parentheses *“cancel out.”

The boundary cells also propagate as b-pulses to the right and left at unit speed.
Should a left channel ever contain b while the corresponding right channel contains
a b; , then the right parenthesis has not been cancelled by a left parenthesis and never
will be. Hence a reject signal is created which propagates right at unit speed. Similarly,
should a right channel contain b while the corresponding left channel contains an a; ,
then a reject signal is created and propagated right at unit speed. Should two boundary
pulses collide without having previously created a reject signal, then an accept state is
propagated right at unit speed. Q.E.D.

The next section treats the closure properties of real-time DBCS languages. In
particular, they are shown to be closed under intersection. Hence, by Theorems 3.10(1)
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and 3.16, the intersection of any regular set and Dyck language is a real-time DBCS
language. Closure under homomorphism, however, is an open problem.

4. CLOSURE PROPERTIES AND TRANSFORMATION LEMMAS

Turorem 4.1.  The class of real-time DBCS languages is closed under intersection
and complementation, hence under union and set difference.

Proof. 'These closures are easily derived by techniques similar to those of Cole [9].
For example, if L; and L; are real-time DBCS languages, then DBCS Z is designed
to accept L; U L; in real time as follows: Each cell has two channels. One is used for
accepting L; and the other for L; . An OR-gate in the accept cell causes Z to accept the
union in real time if and only if at least one of the channels has accepted in real time.
The elapse of real time is clocked by a pulse propagating from left to right at unit speed.
The other closures are similarly derived. The details are left to the reader. Q.E.D.

CorOLLARY 4.1.1. A real-time DBCS language is a real-time DBCS predicate.

The class of linear-time DBCS predicates is also closed under the same operations
[4]. The next theorem states that the class of linear-time DBCS languages is closed
under reversal. That is, if L is a linear-time DBCS language, then so is LR = {xR | x € L}.
One proof is simple: If Z accepts L, then build Z” as the “mirror image” of Z. Then
the leftmost nonboundary cell of Z’ simulates the accept cell of Z. When this cell in Z
simulates an accept state, a pulse is propagated right at unit speed to put the accept
cell of Z’ into an accept state.

Another proof is given below to illustrate a use of the following lemma, the first of
three DBCS transformation lemmas. In these results, an entire pattern is the desired
output, not just the state of one cell. An important example is the firing squad lemma.
(See [19] for a proof that multiplication of two binary integers of total length 7 can be
accomplished by a DBCS within time 7/2.)

LevmMa 4.2.  There is a DBCS which, given initial pattern x of length n, can reverse X
in Linear time. In fact, F*"(x) = xR,

Proof. Consider Fig. 7. The leftmost nonboundary cell sends a pulse containing
its initial state to the right at unit speed. The right b-cell sends a b-pulse one cell left
at the first step; it begins to propagate left at unit speed only when the pulse from the
leftmost nonboundary cell collides with it. Meanwhile, every other cell in the array
sends a pulse containing its initial state to the left at 1/2 unit speed. Each of these
pulses is reflected by the left b-cell but at unit speed. The cell where a reflected pulse
collides with the left-propagating b-pulse maintains the state carried by the reflected
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Fi1c. 7. Reversal in linear time.

pulse from the time of collision on. The collision of the right boundary pulse with the
left boundary is the “computation complete” signal. Q.E.D.

Turorem 4.3.  The class of linear-time DBCS languages is closed under reversal.

Proof. If Z accepts L, then design Z’ to accept LR as follows: Z’ reverses an input,
as in Lemma 4.2, in linear time. The computation complete signal is used to initiate a
firing squad. When it fires, in linear time, then Z’ begins to simulate Z. Q.E.D.

The next lemma guarantees that a block of code can be shifted exactly m positions
to the right in linear time, where m is the length of the code block. The notation X
represents the set {x;x, - %, | 0, € X, 1 <1 < m).

Levwma 4.4. For each integer constant ¢ > 0, there is a DBCS Z = (X, Q, §, b)
with quiescent state 0 and especially designated state @ € X such that F3"+o—3(x@0n—m) —
ux@v, where xe Xg ™, ue Oyt andn = 2m +¢c — 1. (Xg = X — @.)

Proof. Consider Fig. 8, for which ¢ = 1. Assume @ = ¢;¢5 *** ¢, - The leftmost
nonboundary cell sends a g;-pulse to the right at unit speed. At the first step, the
@-cell sends an @-pulse ¢ cells to the right, where it maintains position until the
¢;-pulse collides with it. At this time the @-pulse is sent to the right at 1/2 unit speed,
and the cell at the collision site maintains state ¢, from then on. Meanwhile, each cell
initially in state g;, 2 <C ¢ < m, has sent a g-pulse to the left at unit speed. These
pulses, which are reflected by the left boundary at unit speed, propagate until colliding
with the @-pulse propagating at 1/2 unit speed. The cell at which the collision of the
g;-pulse and @-pulse occurs maintains state g; from the time of collision on. The
computation complete signal is given by the collision of the two @-pulses. Q.E.D.

The final transformation generalizes the “center-finder” technique used in several
of the preceding proofs.
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Fic. 8. 'Translation in linear time.

LemMa 4.5. Let p and q be any two positive integers. Then there is a DBCS Z which
places a special marker state @ at the k-th cell, k = [q/(p + q)n, of an input of length n
within n time steps—i.e., there exists t < n such that

F{q1q5 " 4199511 **" 9n) = (0192 *** 9:-1@Gi41 *** ) for i=[q/(p+ 9]

Proof. The left boundary cell sends a b-pulse L right at 1/p unit speed. The right
boundary cell sends a b-pulse R left at 1/g unit speed. Let ¢ be the position at which
the two pulses collide. L requires pi steps to reach . R requires (7 — z)g steps to reach 7.
But these times must be equal; hence pi = (z — 7)g and the lemma. Q.E.D.

5. DiscussioN AND OPEN PROBLEMS

Pattern recognition with cellular automata has been approached via formal language
theory by proving that any pattern set accepted by a cellular automaton must be a
context-sensitive language. A special interest in time and memory requirements led
to the introduction and study of the real-time DBCS languages, those languages
accepted in real time by deterministic cellular automata which are bounded to use only
“real memory”—i.e., only the memory of those cells to which an input is presented.
Below is a list of several interesting butas yet open problems: (1) Are the context-free
languages a subset of the real-time DBCS languages? (2) Are the real-time DBCS
languages closed under concatenation and reversal ? The real-time iterative acceptor
languages are not [9]. (3) Do there exist nonlinear DBCS predicates—i.e., DBCS
languages which require nonlinear recognition times [4] ? The answer is yes for iterative
acceptors [17].
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