
SSpplliinnee TTuuttoorriiaall NNootteess

Alvy Ray Smith
Computer Graphics Project

Lucasfilm Ltd

Technical Memo No. 77
8 May 1983

Presented as tutorial notes at the 1983 SIGGRAPH, July 1983, and the 1984 SIGGRAPH, July 1984.
This document was reentered in Microsoft Word on 17 Nov 1999. Spelling and punctuation are
generally preserved, but trivially minor spelling errors are corrected. Otherwise additions or
changes made to the original are noted inside square brackets or in footnotes.

Introduction
There are many different types of splines, but there are only a few which

need be mastered for computer animation. In preparation for these notes, I
looked through all the computer graphics texts on my shelf (six of the well-
known ones) and found that none of them present splines as simply as I and my
colleagues know them. They burden the reader with splines which I believe to be
of only historical interest (natural spline) while failing to present one of the most
useful splines for computer animation (cardinal spline). In all but one text, the
convenient 4¥4 matrix formulation of cubic splines is not mentioned. So the pur-
pose of these notes is to present two very powerful classes of cubic splines—the
cardinal and the beta splines—for computer animation and simple 4¥4 matrix
realizations of them. The Catmull-Rom spline and the B-spline, representing the
two classes respectively, will be paid particular attention. The addition of simple
parameters to the matrices for these two special cases form the defining matrices
for the two general classes.

What Are Splines?
A spline is a piecewise polynomial satisfying continuity conditions between

the pieces. We will study piecewise cubic polynomials which are continuous in
the first derivative between pieces or in both the first and second derivative.
These are called cubic splines, and we will henceforth assume cubic splines in
these notes. One of the two classes of splines we present will be continuous in the
first derivative only; the other will be continuous in both the first and second de-
rivative. Since polynomials are continuous in all derivatives, it must be the joints
between the pieces in a spline where continuity is a question. These points are
called knots, or ducks.

The original spline was not mathematical but a real draftsman’s tool consist-
ing of a flexible strip of metal or wood and several heavy pieces which anchored
the flexible strip to the drafting table. The strip curved depending on where these
heavy “ducks” were placed, providing the draftsman with a guide for drawing a
general class of curves, more general than provided by a set of French curves.

Spline Tutorial Notes 2

The first mathematical splines were models of this real spline, but the math has
now evolved beyond the constraints of reality to the point where modern splines
bear little resemblance to the mechanical predecessor. They share with it the no-
tion of graceful curves generated from a small set of discrete points.

The “natural” cubic spline is a model of the mechanical spline. Many texts
belabor their readers with the mathematics of the natural spline. It is historically
interesting, but it suffers from a fatal flaw so far as computer graphics is con-
cerned: It is global. Consider a mechanical spline which has been bent into a
curve by placing its ducks on the drafting table. If the draftsman now moves one
of the ducks to a new location, the entire spline changes shape. A local move-
ment of a duck causes global changes in the curve. We shall be interested here in
local splines only. A movement of a knot (what the mathematical equivalent of a
duck is usually called) causes a change in the curve only in the local neighbor-
hood of the knot.

How Splines Are Used in Computer Animation
Splines are used in three principal ways in computer animation:

1. To define spatial shapes—eg, the shape of an object in two or three dimen-
sions. The knots correspond to points on the surface of the object.

2. To define the path of an object through space. The knots correspond to points
on the path.

3. To define eases—the velocity of movement along a given path. An “ease in”
has slow velocity at the beginning of a path, high at the end. An “ease out” is
the reverse. We use “ease” here as a generalization of these two main forms.

In general, splines are used for modeling (cf 1 above) and to pass smooth space-
time curves through parameters known at sparse times—namely keyframe times
(cf 2 and 3 above).

A polynomial—hence a spline—is a function of one variable. In computer
animation, the one variable is frequently time. Suppose, for example, we want to
move a cube through time and have been given the x locations of one of its cor-
ners at several keyframe times. We wish to generate the corresponding x loca-
tions for inbetween frames. If we simply did linear interpolation between x’s, the
cube would make discontinuous changes in direction when animated. This is
where splines shine; the x values are splined together. Because of the continuity
property of a spline, there will be no discontinuities when the cube is animated.
Most of the early computer animation programs used linear interpolation instead
of splines, one of the reasons their output had a characteristic “mathematical”
look. Of course, “mathematical” in this unhappy context really means “low-
order mathematical”.

Points usually have more than one coordinate, of course. So to spline points
together means to spline their x coordinates together, their y coordinates to-
gether, and their z coordinates together. Thus it is customary to represent splin-
ing of points by presenting a solution for one coordinate, say x, and assuming the
same solution for y and z.

Spline Tutorial Notes 3

The Two Classes of Splines
Interpolation splines are those which pass through their knots. The earliest

splines were all interpolating since the mechanical spline from which they were
derived (arguably) “interpolated” its ducks. The splines of a newer class, the ap-
proximating splines, approach but do not intersect their knots, which in this case
are sometimes called control points. By analogy, the knots for interpolating splines
are sometimes referred to as control points also. So the two classes of splines we
are interested in here are local interpolating splines and local approximating
splines.

The interpolating splines have first-order continuity (continuity of the first
derivative at knots) and approximately splines have second-order continuity
(continuity of the first and second derivative at knots). They are both, of course,
infinitely differentiable at points which are not knots. The approximating splines,
in a sense, trade off the desirable feature of having the knots on the curve for an-
other desirable feature, increased grace from second-order continuity. We shall
present a very useful local interpolation spline then generalize it. Then we shall
do the same for local approximating splines. The generalization in both cases al-
lows us to handle a shape parameter called “tension”. In all cases, a spline can be
generated from its control points by use of a 4×4 matrix.

The Classic Interpolating Spline
A local interpolating spline used for many years by graphicists has gone un-

der several names: the cardinal spline, the Catmull-Rom spline [CATROM], or the
Overhauser spline [OVRHSR]. It has obviously been reinvented several times. I
shall call the generalized class (see below) “cardinal” splines and the most popu-
lar special case “Catmull-Rom” for the authors of the first paper I read contain-
ing it [CATROM]1. I owe the generalization to a chapter of an unpublished text-
book by Jim Clark (issued as a technical memo [CLARKJ]).

The cubic Catmull-Rom Spline may be specified with the following 4x4 ma-
trix:

1 3 3 1
2 5 4 11
1 0 1 02
0 2 0 0

− − 
 − − =
 −
 
 

C

This matrix is used—as are all which we shall present here—to generate a spline
curve as follows: Given a list of x-coordinates, and a parameter u which will take
us along the spline connecting (or approximately connecting) one coordinate x0
to the next x1 as the parameter is varied from 0 to 1, a new x-coordinate is ob-
tained from each value of u from the four nearest given x-coordinates (two be-
hind, two ahead, along the curve) by TU XC , where

U u u u= 3 2 1
and

1 This paper introduced a very general method of generalizing classes of splines. The so-called
Catmull-Rom spline is just one of the many possible results of applying this method.

Spline Tutorial Notes 4

[]1 1 2oX x x x x−= .
Recall that the y-coordinates and z-coordinates of a given set of points to be in-
terpolated would be treated similarly, as would any other parameter to be
smoothly interpolated through an animation—eg, the angle of rotation about the
z-axis. The Appendix contains C code realizing this scheme. This routine will
handle all splines presented in these notes. It is simple, which is one of the mes-
sages of these notes. These splines are so simple and beautiful they should be
taught right along side other basic functions such as sine and cosine.

The Cardinal Splines
A shape parameter called tension causes a spline to bend more sharply; it in-

creases the magnitude of the tangent vector at the knots. The cubic cardinal
spline generalization of the Catmull-Rom spline adds tension with the parameter
labeled a in the following defining matrix:

2 2
2 3 3 2

0 0
0 1 0 0

a

a a a a
a a a a
a a

− − − 
 − − − =
 −
 
 

C

Clearly, .5=C C . Another popular value of a is 1 which, of course, has sharper
bends than the Catmull-Rom but a simple integer matrix

The four curves defined by
()
()
()
()

3 2
0 0

3 2
1 1

3 2
2 2

3 2
3 3

1 ,

1 ,

1 ,

1 ,

c u u u u C

c u u u u C

c u u u u C

c u u u u C

 =  
 =  
 =  
 =  

where Ci is the ith column vector of matrix aC , are called the basis segments for the
cubic cardinal spline, and the four curves drawn as one (see Figure CBASIS) are
called the basis function for the cubic cardinal spline. A spline can be thought of as
the curve ()X u resulting from the sum of copies of the basis function positioned
at each knot and weighed by its magnitude. This is the same as reconstruction of
a function from its samples by a filter equal to the basis function. So the basis
functions for splines turn out to be interesting filter functions for antialiasing. All
splines discussed here have associated basis functions which may be derived
similarly.

The parameter a has a simple interpolation which explains the use of the
word “tension”. The matrix above is used to generate, for each four consecutive
points, the part of the spline curve between the middle two points. Suppose these
four points are called x−1 , x0 , x1 , and x2 . Consider the tangent at points x0 ; for
cardinal splines it is parallel to the vector x x−1 1 . Similarly the tangent at point
x1 is parallel to the vector 0 2x x . The magnitudes of these two tangents are propor-
tional to the lengths of the two vectors, respectively, and the constant of propor-
tionality is a.

Spline Tutorial Notes 5

The cubic cardinal matrix may be easily derived from the two tangent con-
straints above and the fact that the curve must pass through x0 and x1 . Since it is
to be a cubic polynomial, the curve segment between these two points may be
expressed as

X u Au Bu Cu Da f = + + +3 2 ,
or

X u u u u A B C D Ta f = 3 2 1 .
Similar functions for Y (u) and Z (u) are also required or course. Notice that

() []23 2 1 0 TX u u u A B C D′  =   .
Our four constraints may be expressed by the following equations:

()
()
() ()
() ()

0

1

1 1

2 0

0

1

0

1

X x

X x

X a x x

X a x x
−

=

=

′ = −

′ = −

.

Thus, if 0s and 1s represent the slopes, or tangents, at points 0x and 1x , respec-
tively, then

0

1

0

1

0 0 0 1
1 1 1 1
0 0 1 0
3 2 1 0

x A
x B
s C
s D

     
     
     =
     
     
      

.

Let 1M represent the matrix in this equation. Also it is true that
0 1

1 0

0 1

1 2

0 1 0 0
0 0 1 0

0 0
0 0

x x
x x
s xa a
s xa a

−    
    
    =
    −
    −       

.

Let 2M represent the matrix in this equation. From these two matrix equations it
is easy to derive the relationship

1
1 2a
−=C M M .

The Classic Approximating Spline
The best-known approximating spline is the cubic B-spline which can be

specified with the following matrix:
1 3 3 1
3 6 3 01
3 0 3 06
1 4 1 0

− − 
 − =
 −
 
 

B

It is used just as was the cardinal spline matrix above. Its basis segments are gen-
erated just as for the cardinal spline. In brief, they are given by

i ib UB= , 0 4≤ <i .

Spline Tutorial Notes 6

The iB are the column vectors of B. Its basis function, the concatenation of the
basis segments, is shown in figure BBASIS. This is another particularly interest-
ing function for an antialiasing filter.

Besides having second-order continuity, the B-spline has another valuable
property: It lies within the convex hull of its control points. It cannot get any
“wilder” than its control points, or the polygon defined by its control points. In-
terpolating splines are not so nice. They can have kinks and wild fluctuations. All
generalizations below of the B-spline share this convex-hull property.

Tensioned B-Splines
Tom Duff has generalized the B-splines to tensioned B-splines (paper in

preparation, Lucasfilm) by analogy with the generalization of Catmull-Rom
splines to cardinal splines. The tensioned cubic B-splines may be specified with
the following matrix:

12 9 9 12
3 12 18 18 15 01
3 0 3 06

6 2 0

a

a a a a
a a a
a a
a a a

− − − 
 − − =
 −
 − 

B

Clearly, 1=B B .

The Beta Splines
Brian Barsky [BARSKY] has generalized the B-spline even further by adding

not only tension but also what he calls bias. Bias may be described as the ten-
dency for a spline to bunch more to the left than to the right, or vice versa. More
precisely, it is the ratio of the velocity right of a knot to the velocity left of the
knot. Its action is best described with pictures (Figure BIAS). The biased and ten-
sioned B-spline is called the Beta-spline, or β-spline. The cubic β-spline may be
specified with the following matrix:

() ()
() ()

()
()

1 2

3 3 2 2
1 2 1 1 1 2 1 1

3 3 2 2
1 2 1 1 2 1

, 3 3
1 1 1 1

3 2
1 2 1 1

2 2 2 1 2

6 3 2 2 3 2 0
1

6 6 6 0

2 4 2 0

β β

β β β β β β β β

β β β β β β

δ β β β β

β β β β

 − + + + − + + +
 
 − + + +
 =
 − −
 
 + +  

B

where
δ β β β β= + + + +2 1

3
1
2

12 4 4 2 .
Clearly, 1,0=B B . Not so clearly, aB can be shown to be a special case of

1 2,β βB
where

β1 1=
and

β 2 12 1=
− a
a

.

Spline Tutorial Notes 7

The Duff formulation of tension is slightly more convenient to use than the Bar-
sky formulation because of a nicer range for the tension parameter. For example,
the results of varying a from 0 to 1 are obtained by varying β 2 from ∞ to 0.

Knot Spacing
We have assumed throughout this discussion that the knots are uniformly

spaced; in fact, they are assumed to be integers. Parameter u varying from 0 to 1
takes the spline from one integer knot to the next. This is reflected in the code in
the Appendix. The code also works for knots of multiplicity greater than 1,
where multiplicity is the number of times a knot is counted, or the number of
times it appears consecutively in the list of knots provided as an argument to the
routine. That is, we assume either unit spacing of knots or zero spacing in the
case of multiplicities greater than 1.

For cubic splines, the first and last knots in a list used only for starting and
stopping conditions (since only the middle two knots of each consecutive four
are connected by application of the spline matrix to the four knots). If the spline
is not to be a closed curve—it is not to be a cyclic spline—then it is frequently
adequate to double the first and last knots, to give them multiplicity 2. That is,
the first and second knot are made identical, and the last and next-to-last knot
are made identical. To make a cyclic spline, simply append the last knot to the
first of the list and append the (original) first two knots to the end.

The effect of a knot with multiplicity greater than 1 is to cause an approxi-
mating spline to approach the knot more closely. Thus it is like a local tension
control but unfortunately is not subtle (but see The Future below). For interpolat-
ing splines, which already pass through the knots, increased multiplicity causes
loops, or kinks, at the knots.

To use nonuniform spacing of knots would imply that the basis function
changes shape as it is translated along the parameter u axis—ie, that a nonuniform
basis is being used. Since the shape of the spline would certainly change with a
different knot spacing, knot spacing might be considered to be a shape control.
One method for assigning nonuniformly spaced knots separates them by dis-
tances proportional to the distances separating the values at the knots. So tightly
bunched data is assigned to closely spaced knots. This technique [RIESEN] does
not make dramatic changes in spline shape, relative that obtained with a uniform
spacing, unless the data is tightly bunched. That this is true can be seen by con-
sidering what happens if the data is so close it actually coalesces into one point.
Then the proportional spacing method of nonuniform basis places the corre-
sponding knots atop one another to get, equivalently, a single knot of multiplic-
ity 1. We have already seen that this causes the spline to approach its knot or to
kink. The more general problem of assigning nonuniform spacing to knots is a
large one. It is related to the difficult problem of sampling in perspective, where
the perspective mapping causes nonuniform spacing between samples.

On Using the Program
The code of the Appendix generate all the splines in these notes. For conven-

ient use in animation, however, there is one further consideration which the user
may want to make. The code provided returns a constant number of points be-

Spline Tutorial Notes 8

tween knots. What is typically desired in animation are points evenly spaced
along the length of the spline. Analytically, this is a difficult problem. An ap-
proximation which may be satisfactory in many cases assumes the spline is accu-
rately represented by the polygon formed from the line segments joining the
points returned between the knots. Then a cumulative length can be determined
from the individual lengths of these line segments and equally spaced points
marked off along this length.

Words We Have Not Used
Topics we have not covered which relate to splines—or rather we have not

had to cover—include Bezier curves, Hermite interpolation, parabolic blending,
Bernstein basis, and natural splines. On the other hand, a very interesting topic
which we did not cover here is the generalization of splines to surface patches, a
topic which is covered in several texts and which is perhaps more appropriate in
the context of modeling that animation.

A Case in Point
The “Genesis Demo” for Star Trek II: The Wrath of Khan which we executed

for Paramount featured a flyby of a planet by an imaginary spacecraft. Its path as
a very complex spiraling move about the planet with several direction changes
for dramatic impact and story purposes. We modeled it with a 6-dimensional cu-
bic spline—ie, six parameters (three for position and three for orientation) were
splined with the techniques outlined here.

The Future
One of the next advances in splines will be announced at SIGGRAPH 83.

Brian Barsky and John Beatty have generated the β-spline in such a way that the
shape parameters, bias and tension, are local properties of the spline just as is
shape [BARBTY]. Throughout these notes, tension has been a global property, a
fact inconsistent with the insistence of shape locality.

Acknowledgement
I first became aware of the 4×4 formulation of splines from an appendix in

Ed Catmull’s thesis [CATMUL]. These notes have benefited a great deal from
discussions I have had with Tom Duff.

References
[BARBTY] Brian A Barsky and John C Beatty, Local Control of Bias and Tension in

Beta-Splines, SIGGRAPH 83, Detroit, Jul 25-29, 1983. [Also in Varying
the Betas in Beta-Splines, Report No UCB/CSD 83/112, Computer Sci-
ence Division (EECS), University of California, Berkeley, California,
Mar 1983.]

[BARSKY] Brian A Barsky, The Beta-Spline: A Local Representation Based on Shape
Parameters and Fundamental Geometric Measures, PhD dissertation,
Department of Computer Science, University of Utah, Salt Lake City,
Dec 1981.

Spline Tutorial Notes 9

[CATMUL] Edwin Catmull, A Subdivision Algorithm for Computer Display of
Curved Surfaces, PhD dissertation, Department of Computer Science,
University of Utah, Salt Lake City, Dec 1974.

[CATROM] Edwin Catmull and Raphael Rom, A Class of Local Interpolating
Splines, Computer Aided Geometric Design, edited by Robert E
Barnhill and Richard F Riesenfeld, Academic Press, San Francisco,
1974, 317-326.

[CLARKJ] James H Clark, Parametric Curves, Surfaces and Volumes in Computer
Graphics and Computer-Aided Geometric Design, Technical Report 221,
Computer Systems Laboratory, Stanford University, Palo Alto, Cali-
fornia, Nov 1981.

[DEBOOR] Carl de Boor, A Practical Guide to Splines, Springer-Verlag, New
York, 1978.

[OVRHSR] J A Brewer and D C Anderson, Visual Interaction with Overhauser
Curves and Surfaces, Computer Graphics (SIGGRAPH 77 Proceed-
ings), Vol 11, No 2, San Jose, California, Jul 20-22, 1977, 132-137.

[RIESEN] Richard Riesenfeld, Applications of B-spline Approximation to Geometric
Problems of Computer-Aided Design, PhD dissertation, Department of
Computer Science, University of Utah, Salt Lake City, Mar 1973.

APPENDIX: Spline Program
/* CubicSpline.c—Generates a cubic spline through given list of (x,y,z)

triples.
Given: Number of knots n (including two endpoint knots),

the list of knots as (x,y,z) triples,
the grain = number of line segments desired between knots,
the type of spline (BETA, CARDINAL),
the parameters for tension and bias.

Returned: (n - 3) * grain + 1 points along spline, including the knots.
The two endpoints (used for end conditions only)
and any points between them and their nearest neighbor
knots are NOT returned.

CubicSpline() returns pointer to list of points.
(NULL is returned for error.)

*/

#define BETA 1
#define CARDINAL 2
#define NULL 0
#define PNTLMT 4096 /* max. no. of points which may be returned */
#define GRNCNT 256 /* max. no. of line segments between knots */

typedef struct { double x,y,z; } point;
typedef double matrix [4][4];

static point Spline[PNTLMT]; /* points returned here /*

Spline Tutorial Notes 10

point *CubicSpline(n, knots, grain, type, tension, bias)

point *knots;
int n, grain, type;
double tension, bias;

{
register point *s, *k0, *km1, *k2;
int 1, j, last;
double alpha[GRNCNT], matrix();
matrix m;

if(n<3 || grain<0 || grain>GRNCNT) return(NULL);
last = (n-3)*grain + 1;
if(last>PNTLMT) return(NULL);
if(type!=BETA && type!=CARDINAL) return(NULL);
if(type==BETA) {

if(bias==0. && tension==0.) return(NULL);
GetBetaMatrix(bias, tension, m);

} else GetCardinalMatrix(tension, m);
for(i=0; i<grain; i++) alpha[i] = ((double)i)/grain;
s = Spline;
km1 = knots;
k0 = km1+1; k1 = k0+1; k2 = k1+1;
for(i=1; i<n-1; i++) {

for(j=0; j<grain; j++) {
s->x = Matrix(km1->x, k0->x, k1->x, k2->x, alpha[j], m);
s->y = Matrix(km1->y, k0->y, k1->y, k2->y, alpha[j], m);
(s++)->z = Matrix(km1->z, k0->z, k1->z, k2->z, alpha[j], m);

}
k0++; km1++; k1++; k2++;

}
return(Spline);

}

GetBetaMatrix(b0, b1, m)

double b0, b1;
matrix m;

}
register i, j;
double d, b2, b3;

b2 = b0*b0;
b3 = b0*b2;
m[0][0] = -2.*b3;
m[0][1] = 2.*(b1+b3+b2+b0);
m[0][2] = -2.*(b1+b2+b0+1.);

Spline Tutorial Notes 11

m[1][0] = 6.*b3;
m[1][1] = -3.*(b1+2.*b3+2.*b2);
m[1][2] = 3.*(b1+2.*b2);
m[2][0] = -6.*b3;
m[2][1] = 6.*(b3-b0);
m[2][2] = 6.*b0;
m[3][0] = 2.*b3;
m[3][1] = b1+4.*(b2+b0);
m[0][3] = m[3][2] = 2.;
m[1][3] = m[2][3] = m[3][3] = 0.;
d = 1./(b1+2.*b3+4.*b2+4.*b0+2.);
for(i=0; i<4; i++) for(j=0; j<4; j++) m[i][j] *= d;

}

GetCardinalMatrix(a, m)

double a;
matrix m;

{
m[0][1] = 2.-a;
m[0][2] = a-2.;
m[1][0] = 2.*a;
m[1][1] = a-3.;
m[1][2] = 3.-2*a;
m[3][1] = 1.;
m[0][3] = m[2][2] = a;
m[0][0] = m[1][3] = m[2][0] = -a;
m[2][1] = m[2][3] = m[3][0] = m[3][2] = m[3][3] = 0.;

}

double Matrix(a, b, c, d, alpha, m)

double a, b, c, d, alpha;
matrix m;

{
double p0, p1, p2, p3;

p0 = m[0][0]*a + m[0][1]*b + m[0][2]*c + m[0][3]*d;
p1 = m[1][0]*a + m[1][1]*b + m[1][2]*c + m[1][3]*d;
p2 = m[2][0]*a + m[2][1]*b + m[2][2]*c + m[2][3]*d;
p3 = m[3][0]*a + m[3][1]*b + m[3][2]*c + m[3][3]*d;
return(p3+alpha*(p2+alpha*(p1+alpha*p0)));

}

Spline Tutorial Notes 12

Figure BIAS.

Adapted from [BARBTY]

Spline Tutorial Notes 13

[Above, 0b and 1b red, 2b and 3b blue. Plotted in Maple.]

Figure BBASIS2.
(Adapted from [BARBTY])

2 [The function labels are reversed left to right. So 0b and 3b labels should be swapped; 1b and
2b labels too. See the new figures above, added Nov 1999.]

Spline Tutorial Notes 14

[Above, 0c and 1c red, 2c and 3c blue. Plotted in Maple.]

Figure CBASIS.
(Adapted from [CLARKJ])

The Cardinal spline basis functions3. The functions have been illustrated together
in this way to demonstrate the continuity they share.

3 [The function labels are reversed left to right. So 0c and 3c labels should be swapped; 1c and
2c labels too. See the new figures above, added Nov 1999.]

