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Abstract 
Jim Clark's Cardinal splines are a family of local interpolating splines with 

an adjustable tension parameter. The family may be described by a matrix which 
yields spline coefficients as linear functions of knot values. We characterize the 
Cardinal spline matrix in a way which suggests a method of adding tension to B-
splines, and show that this tension corresponds to the 2β  parameter of Brian Bar-
sky's β -splines. The similarity between the tension parameters of these two 
splines suggests looking for an interpolating spline family which incorporates a 
bias parameter analogous to Barsky's 1β . We demonstrate two such families with 
different continuity properties (one is 1G , the other 1C ). Finally, we develop a 
five-parameter characterization of all 0C , 1G  translation invariant cubic matrix 
splines and indicate that all the families we have developed are sub-families of it. 

CR Categories and Subject Descriptors: G.1.1 [Numerical Analysis] Spline and 
piecewise polynomial interpolation, G.1.2 [Numerical Analysis] Spline and 
piecewise polynomial approximation, I.3.5 [Computer Graphics] Curve, surface, 
solid and object representations. 

General Terms: Algorithms 

Additional Keywords and Phrases: β -spline, Cardinal spline, matrix spline, lo-
cal spline, computer aided geometric design 

Introduction 
A local spline is one for which changing the value of a single knot affects only 

a bounded number of spline segments in the knot's vicinity. This is a particularly 
useful property for geometric design systems and computer animation systems, 
since it means that a designer can adjust the appearance of a particular part of his 
design without fear of global complications. 

Many popular local splines may be characterized by a system of linear equa-
tions relating the spline's knots to its polynomial coefficients. These linear equa-
tions may be written as a rectangular matrix. 
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The Matrix Spline Notation 
Given a sequence of control points or knots, iK  0 i m≤ <  and an 1n +  by s  ma-

trix M  we can define the matrix spline MS  of degree n and support s by 
1
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( ) 0 1,0 1
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S t i t M K t i m s
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We will usually omit the subscript M when the matrix is clear from context, and 
we will use the notation ( ) ( )iS t S i t= + . 

In computer graphics we are particularly concerned with the case 3n = , 
4s = , which makes M one of the 4 by 4 matrices so familiar to computer graphics 

hardware and software. In this case the above equation may be rewritten as 
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Most (but not all, see for example [Knuth]) of the well-known local splines may 
be expressed in this form. For example, the uniform cubic B-spline [Riesenfeld] is 
represented by 

1 3 3 1
3 6 3 01
3 0 3 06
1 4 1 0

BsplineM

− − 
 − =
 −
 
 

. 

Without loss of confusion [sic], we will identify matrices with their splines. Thus, 
when we speak of “the derivative of M”, we will mean “the derivative of the 
spline whose matrix is M”. 

The first use of the matrix spline notation of which I am aware is [Catmull]. 

Families of Splines 
Brian Barsky introduced a two-parameter family of matrix splines called the 

β -splines (see [Barsky]). The β -splines are continuous and have continuous unit 
tangent and curvature vectors. In particular, the β -splines satisfy 
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Barsky calls the last two of these conditions 1G  and 2G . They are geometric gen-
eralizations of the parametric continuity conditions 1C  and 2C . The β -spline ma-
trix is 

                                                 
1 Here (1)iS′  is the derivative from the left and 1(0)iS +′  is the derivative at the same point from 
the right. 
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3 3 2 2
1 2 1 1 1 2 1 1
3 3 2 2
1 2 1 1 2 1

3 2 3 3
2 1 1 1 1 1 1 1
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1 2 1 1

2 2( ) 2( 1) 2
6 3( 2 2 ) 3 6 01
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 − + + + − + + +
 − + + + =  + + + + − −
 

+ +  

 

1β  biases or slews the curve to the left or right (parametrically) of the unbiased B-
spline. As 2β  increases, the curve becomes more tense and more closely ap-
proximates its knots. 

Another useful family of splines is the Cardinal splines [Clark]. The Cardinal 
splines are interpolating splines with first derivative continuity. They are defined 
by the constraints 
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Solving these equations for the spline coefficients yields the matrix 
2 2

2 3 3 2
0 0

0 1 0 0

c c c c

c c c c

c c

− − − 
 − − − 
 −
 
 

. 

Using the notation lerp( , , ) (1 )M N M Nα α α= − +  (lerp is an abbreviation for 
linear interpolant)2, we can rewrite this as 1lerp( , , )Ease cM M c=  where 

0 2 2 0
0 3 3 0
0 0 0 0
0 1 0 0

EaseM

− 
 − =
 
 
 

, 1

1 1 1 1
2 2 1 1
1 0 1 0
0 1 0 0

cM =

− − 
 − − =
 −
 
 

.    (1) 

Thus, each of the Cardinal splines is a weighted average of the 1c =  spline, 
which has 2(0)i i iS K K+′ = −  and 3 1(1)i i iS K K+ +′ = − , and the Ease spline, which has 

(0) (1) 0i iS S′ ′= = 3. The Cardinal splines may be thought of as variable-tension local 
interpolating splines which take their corners more sharply as 0c → . An inter-
esting member of the Cardinal spline family has .5c = . This is the Catmull-Rom 
cubic spline, described in [Catmull-Rom] and later in [Brewer-Anderson]. 

Equation (1) immediately suggests a method of adjusting the tension of B-
splines using 

                                                 
2 Note that lerping two spline matrices is equivalent to lerping the coefficients of the polynomials 
they generate, which in turn is equivalent to lerping the points on the spline curves and their de-
rivatives. 
 
3 The Ease spline curve is the polygon that interpolates its knots. Its velocity decelerates to zero as 
it passes through each knot. Thus, its motion as a function of t `eases' in and out of each knot. The 
term ease is taken from the lexicon of conventional (not computer) animators. 
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lerp( , , )
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6 2 0

TenseBspline Ease BsplineM M M

γ γ γ γ
γ γ γ

γ
γ γ
γ γ γ

− − − 
 − − = =
 −
 −  

.  (2) 

My excitement at discovering this family of splines was tempered by Alvy Ray 
Smith's revelation (about an hour later) [Smith1] that it is the subfamily of the β -
splines with 1 1β =  and 2 2 212(1 ) /β γ γ= − . The main advantage to my formulation 
is that 2γ  varies over a nicer range than 2β . In particular 20 β≤ < ∞  corresponds 
to 21 0γ≥ > . The case 2 0γ = , which yields the Ease spline (the only interpolating 
spline of the family) is unattainable in the β -splines. 

The substitution of 2γ  for 2β  can be generalized to other values of 1β . If we 
substitute 3 2

2 1 1 1 2 22( 2 2 1)(1 ) /β β β β γ γ= + + + −  and 1 1 1/( 1)β γ γ= − +  into the β -
spline matrix, we get: 

3 3 3 3
1 1 1 1
3 3
1 1 1 1

23 2 2
1 1 1 1 1
3 2 3
1 1 1 1

1 ( 1) 1 ( 1)
3 3 3( 1) 11

lerp( , , )
6 3 3(2 1) 3 ( 1) 0

3 3 1) ( 1) 0

EaseM

γ γ γ γ
γ γ γ γ

γ
γ γ γ γ γ
γ γ γ γ

 − + − +
 − − − 
 + + − +
 

− − − − +  

. 

Thus, we see that for any fixed 1β  (equivalently 1γ ), 2β  (eqv. 2γ ) has the effect of 
picking a matrix (and therefore a curve) that is some weighted average of the 
Ease spline and the 2 0β =  (eqv. 2 1γ = ) spline, in the same manner that the Car-
dinal splines are derived from the 1c =  spline. 

Interpolating Splines with Tension Control 
The analogy between the Cardinal splines and the 2β  parameter of the β -

splines suggests looking for a generalization of the Cardinal splines that incorpo-
rates a parameter analogous to 1β . There at least two ways of doing this. 1β  ex-
presses the ratio of the lengths of a β -spline's derivative vectors as we approach 
a knot from either side. Therefore let us consider the two interpolating splines 
whose first derivatives match the 1c =  spline's at one end, and are zero at the 
other end. These have the matrices 

0 1 2 1
0 2 3 1
0 0 0 0
0 1 0 0

SkewLeftM

− 
 − − =
 
 
 

 

and 
1 2 1 0
2 3 1 0
1 0 1 0
0 1 0 0

SkewRightM

− − 
 − =
 −
 
 

.  

SkewLeftM  has zero derivative at the left end, while SkewRighttM  has zero deriva-
tive at the right end. Thus, 
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1lerp( , , )SkewLeft SkewRightM M τ    (3) 

is a 1G  family of interpolating splines. When 1 .5τ = , formula (3) yields CatmullRomM . 
Lerping this formula with the Ease matrix we get 

1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2
1 2

1 2 1 2

( 1) 2 2 (1 )
2 (1 ) 3 3 2 ( 1)

lerp( ,lerp( , , ), )
0 0

0 1 0 0

Ease SkewLeft SkewRightM M M

τ τ τ τ τ τ τ τ
τ τ τ τ τ τ τ τ

τ τ
τ τ τ τ

− − + − − 
 − − − − =
 −
 
 

.  (4) 

This is a two parameter family of 1G  interpolating splines with variable tension 
and bias, which we will call the τ -splines. 

Instead of applying the β -spline bias concept directly to the Cardinal 
splines, we could note that the Catmull-Rom cubic spline is defined by 
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where 2 .5δ = . 
When 2 0δ =  and 2 1δ =  the matrices satisfying (5) are 

1 2 1 0
2 4 2 0
1 1 0 0
0 1 0 0

LeftM

− − 
 − =
 −
 
 

 

and 
0 1 2 1
0 1 2 1
0 1 1 0
0 1 0 0

RightM

− 
 − − =
 −
 
 

.  

respectively. 
Varying 2δ  from 0 to 1 causes the spline's derivative at iK  to vary from 

1i iK K+ −  to 2 1i iK K+ +− , causing the curve to slew to the left or the right. The bias 
that 2δ  causes is 1C  rather than 1G . Lerping the 2δ  family of splines with the 
Ease spline produces a two parameter family of 1C  interpolating splines with 
variable tension and bias. The matrix for this family, which we will call the δ -
splines, is 

1 2 1 2 1 2 1 2

1 2 1 2 2 1 2
1 2

1 2 1 2 1 2

( 1) 2 (1 ) 2
2(1 ) (3 1) 3 3

lerp( ,lerp( , , ), )
( 1) (1 2 ) 0

0 1 0 0

Ease Left RightM M M

δ δ δ δ δ δ δ δ
δ δ δ δ δ δ δ

δ δ
δ δ δ δ δ δ

− − − − 
 − − − − − =
 − −
 
 

. (6) 

A Five-Parameter Family of G1 Local Splines 
For a given cubic polynomial, ( )iS t  is uniquely specified if we know (0)iS , 

(1)iS , (0)iS′ , and (1)iS′ . Each of these is a linear combination of the coefficients of 
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( )iS t , and therefore is a linear combination of the knots. If we restrict our atten-
tion to those matrix splines which are 0C , 1G  and translation invariant, how are 
our choices for (0)iS , (1)iS , (0)iS′ , and (1)iS′  restricted? By translation invariant, 
we mean that adding some constant D to each of iK  has no effect on ( )iS t  other 
than to add D to it everywhere4. That is 
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K D
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+
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 +   = +   +
 +  
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The 0C  condition means that 1(0) (1)i iS S+ = . This implies that (1)iS  cannot depend 
on iK , since iK  is not one of the knots of 1( )iS t+ . Therefore, (1)iS  and 1(0)iS +  may 
be expressed as 1 2 3i i iaK bK cK+ + ++ + . This implies that 1 2(0)i i i iS aK bK cK+ += + + . 
Translation independence implies that 

1 2 1 2( ) ( ) ( )i i i i i ia K D b K D c K D aK bK cK D+ + + ++ + + + + = + + + . 

Since this must be true independent of iK , 1iK + , and 2iK + , it is true when 
1 2 0i i iK K K+ += = = , and therefore 1a b c+ + = . 

Similarly, 1G  implies that (0)iS′  cannot depend on 3iK +  and (1)iS′  cannot de-
pend on iK , and therefore, for some d, e, f, and γ  

1 2

1 2 3

(0) (1 )( )
(1) ( )

i i i i

i i i i

S dK eK fK

S dK eK fK

γ
γ

+ +

+ + +

′ = − + +
′ = + +

. 

Translation independence requires that (1)iS′  not change when D is added to the 
knots. Therefore 

1 2 3 1 2 3( ( ) ( ) ( )) ( )i i i i i id K D e K D f K D dK eK fKγ γ+ + + + + ++ + + + + = + +  

and thus 0d e f+ + = . Therefore, we can substitute 
(1 )

1 1
( 1)
(1 2 )

a
b

c a b

d

e

f d e

ι σ
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ι
τ δ
τ δ

τδ

= −
=
= − − = −
= −
= −
= − − =

 

to yield 
1 2

2 1 3

1 2 1

2 1 3 2

(0) lerp( ,lerp( , , ), )
(1) lerp( ,lerp( , , ), )
(0) (1 )lerp(0,lerp( , , ), )
(1) lerp(0,lerp( , , ), )

i i i i

i i i i

i i i i i
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σ ι
σ ι

γ δ τ
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+ +

+ + +

+ + +

+ + + +

=
=
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′ = − −

.   (7) 

It should be clear from the derivation that this family includes all the 0C , 1G , 
translation invariant cubic matrix splines. The intuitive functions of the five pa-
rameters are as follows: 

                                                 
4 Note that all matrix splines are invariant under scales and rotations about the origin. 
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• ι  controls how close ( )iS t  comes to interpolating 1iK +  and 2iK + . When 
0ι = , 1(0)i iS K += , and 2(1)i iS K += . When 1ι = , (0)iS  and (1)iS  are inde-

pendent of 1iK +  and 2iK + , respectively. 
• σ  controls how much (0)iS  and (1)iS  slew parallel to the lines 2( , )i iK K +  

and 1 3( , )i iK K+ + . When .5σ = , (0)iS  will lie symmetrically between iK  and 
2iK + , as will (1)iS  between 1iK +  and 3iK + . 

• γ  controls the “geometricity“ of the spline. When .5γ = , the spline will be 
1C . For other values of γ , the spline will be given a “kick“ in the direction 

of its tangent as it passes through (0)iS . 
• τ  controls the tension on the spline. When 0τ = , ( )iS t′  goes to zero as the 

curve passes each knot. As τ  get larger, the curve gets less tense, passing 
its knots at greater speed. 

• δ  controls the direction the curve heads as it passes each knot. When 
0δ = , (0)iS′  heads “left“, parallel to the line 1( , )i iK K + . When 1δ = , (0)iS′  

heads “right”, parallel to 1 2( , )i iK K+ + . 
The matrix for this family of splines, which we will call the M-splines5, is 

2 2 3 2 2 2 4 2 3 2 2 2 2
2 2 2 3 3 2 5 4 3 3 6 2 3 4 2 3 3 3 3

( 1) (2 2 1) (1 ) 0
(1 ) 1 0

δγτ δτ γτ ισ ι τ δγτ δτ γτ ισ ι τ δγτ δτ γτ ισ ι δγτ ισ
δγτ δτ γτ ισ ι τ δγτ δτ γτ ισ ι τ δγτ δτ γτ ισ ι ισ δγτ

τ δγ δ γ τ δγ δ γ δτ γ
ι σ ι ισ

− + + − + − − − + − + + − + + + + − − 
 − − + − + − + + − + − − − − − − + − 
 − + + − − − + −
 − − 

.  

All the spline families we have discussed above are subfamilies of the M-splines. 
Our tense B-spline family has .5σ = , 2 / 3ι γ= , .5γ = , .5δ = , and 22τ γ= . The 
Cardinal splines are the subfamily with 0ι = , .5γ = , .5δ = , and 4cτ = . (The 
value of σ  is irrelevant when 0ι = .) The τ -splines are the class with 0ι = , 

11γ τ= − , .5γ = , and 22τ τ= . The δ -splines have 0ι = , .5γ = , 1δ δ= , and 22τ δ= . 

Examples 
Figure 1 shows several members of each of the spline families developed in 

this paper. These pictures were drawn by a '50s Formica boomerang design sys-
tem written in Ideal [VanWyk] and Emacs. Each of the illustrations uses the same 
set of six knots and varies one of the parameters of the family from 0 to 1 in steps 
of 1/4. Curves drawn with longer dashed lines correspond to larger parameter 
values, with the solid curve showing the parameter set to 1. 

The upper left illustration shows tensed B-splines with 2 0(.25)1γ = . The up-
per right shows Cardinal splines with 0(.25)1c = . The lower left shows τ -splines 
with 1 0(.25)1τ =  and 2 .5τ = . The lower right shows δ -splines with 1 0(.25)1δ =  
and 2 .5δ = . 

The illustrations clearly show the effects of the tension and bias parameters. 
As 2γ  or c approaches zero, the curves more closely approach the polygon con-
necting the knots. As 1τ  or 1γ  varies from zero to one, the curves slew from left to 
right. 

Conclusions 
The original observation on which this work is based is that the Cardinal 

spline tension parameter is equivalent to lerping the 1c =  and Ease splines. This 

                                                 
5 M is for Matrix, since this class includes most of the useful cubic matrix splines. 
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suggested an analogous method of applying tension to B-splines, which Alvy 
Ray Smith demonstrated was equivalent to the 2β  parameter of Barsky's β -
splines. This in turn suggested looking for an extension of the Cardinal splines 
that have a bias parameter analogous to 1β . 

There are two families of interpolating splines with bias and tension controls, 
one of them 1G  (the τ -splines) and the other 1C  (the δ -splines). We have con-
structed a five-parameter 1G  family which subsumes the β -, c-, τ -, and δ -
splines and which exhausts the translation invariant 1G  cubic matrix splines. 

All of this work was made easy by the matrix spline notation. Linear condi-
tions on polynomials and their derivatives are equivalent to corresponding con-
ditions on their coefficients (because the derivative is a linear operator). Since the 
coefficients of a matrix spline are linear combinations of its knots, these condi-
tions are therefore equivalent to corresponding conditions on the matrix. This 
equivalence makes the proofs of continuity criteria trivial (to the point where I 
haven't bothered including any in this paper), and frees the imagination in its 
search for splines with interesting and useful properties. 
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Fig. 1—Examples of Spline Families 


