
TTeexxaass
((PPrreelliimmiinnaarryy RReeppoorrtt))

WWiitthh AAddddeenndduumm ooff 2211 AAuugg 11997799

Alvy Ray Smith
Computer Graphics Lab

New York Institute of Technology

Technical Memo No. 10
27 July 1979

Published as Tutorial Notes at SIGGRAPH ’79 (without Addendum). This document was reen-
tered by the author in Microsoft Word on Nov 5, 1999. Spelling and punctuation are generally
preserved, but trivially minor spelling errors are corrected. Otherwise additions or changes made
to the original are noted inside square brackets or in footnotes.

Introduction
Texas—from TEXture Applying System—is a set of programs for moving

pictures about in 3-space to obtain other pictures. Texas makes pictures com-
prised of other pictures embedded in 3-space. Here a picture, or texture, may be
thought of as the contents of a framebuffer, although it may be stored temporar-
ily in a disk file or disguised as a mipmap. Texas takes as input a stageset, which
is a set of flats, where a flat is a picture painted (mapped) onto the surface en-
closed by a planar, convex quadrilateral. Its output is a 2-dimensional rendering
of a stageset as viewed from some vantage point in 3-space.

Texas features incremental rendering of textures in perspective, depth dark-
ening, front and back textures for each flat, z buffering or priority sorting for
hidden surface removal, antialiasing of edges or tag buffering for ex post facto
dekinking. It uses the Picture System II driver by Jim Clark, the mipmap utilities
of Lance Williams and Dick Lundin, and has an interface to Garland Stern’s 3-
dimensional animation program Arbor (or Boop) and to Ed Catmull’s polygon
rendering program Render.

Texas is intended to be a generalization of the multiplane camera. The cur-
rent version lacks transparency [but see Appendix], however, so cannot yet do
multiplaning. Another inadequacy at present is the priority sort algorithm which
is simple minded. Intended additions are light sources, shadows, global partial
transparencies for individual flats, correct pixel preimage averaging, as well as
local transparency and a better sort.

Usage Manual
Texas

An interactive tablet-driven program for creating a stageset on the PSII (on
the [DEC PDP] ll/45 only). If you have never run this program before, you
should initialize your .texastate in some way. The following will work:
cp /usr/alvy/.texastate usr/[yourname]/.texastate

Texas 2

(See Edtexstate below.) Then Texas comes up at the PSII station by typing “texas”
at the terminal. The complete usage is given by :
texas [-] [-e[oi]] [-f]

where,
- alone causes the usage message to be printed
-e puts eases on both ends of animation created by Texas (see “ani-

mate stageset” below)
-ei puts an ease in to the animation only
-eo puts an ease out from the animation only
-f displays a fieldguide on the nonmenu portion of the PSII display

for positioning
All of the menus are arranged on a tree with “Texas Main Menu” at the root

node. Each menu has a “return” button which returns you up one level in the
tree (assume the root node is at the top) and an “exit” button which exits the
program (down and out on the stylus also exits the program).

To get started, you should push the “create directory” button and type in the
name of a directory where you want your stagesets to be stored. This button does
not create the directory. It merely enters its name in your .texastate. You will
henceforth come up with this directory assumed. For example, the “select stage-
set” button will automatically list the contents of this directory on the PSII.

If there are no stagesets in your stageset directory, you may place one there
with the “create stageset” button. “Delete stageset” works as advertised.

The main entry point to the subtrees of Texas is the button marked “manipu-
late stageset”. If you have just created a stageset, then the button of most interest
at this level is the “create flat” button. Each time you press this button, a canoni-
cal flat is appended to your stageset. Appended flats are named by default f0,
f1, f2, … . These names may be altered with Editset without ill effect. If you
want to type in your own flat coordinates, you should create a dummy stageset,
with this button, which has as many flats as you will need. Then use Editset to
enter the desired coordinates.

The individual flats can be moved about in 3-space with the “transform flat”
button, or the entire stageset can be moved about in 3-space as a unit with the
“transform stageset” button.

Two Important Points:
(1) WHAT YOU SEE IS WHAT YOU GET. The outermost box on the PSII

display represents the edges of a framebuffer. If you were to render the current
stageset as seen by the current camera (see the “camera” button in the main
menu) into a framebuffer using Tender, you would get the flats in the arrange-
ment shown on the display, clipped as shown. This is true regardless of what the
numbers in the stageset might indicate (see Prset below).

(2) “UPDATE STATESET” IS THE BUTTON WHICH COUNTS. All changes
displayed on the monitor are on a local copy of your stageset until you press the
“update stageset” button. So the “transform” buttons are like the Unix text editor
which edits a local copy of your file until you give it the “w” command. Since a

Texas 3

lot of work can be lost if you forget to perform a permanent update, Texas puts
in some reminders here and there.

The buttons “transform flat” and “delete flat” will not work unless a particu-
lar flat has been selected with the “select flat” button. This level provides two
ways for selecting a flat. One is “hit” for hit testing. The other is useful when the
stageset is so complex that hit testing becomes ambiguous. It is the “step” mode.
Each time you press the stylus down, the next flat in the stageset is selected and
brightened on the display. If the “verbose” switch (up a level) is on, pertinent
data about the selected flat is printed on the terminal.

Both the “transform” levels will spew out copious information on the termi-
nal if the “verbose” switch is on. This is useful for making precise adjustments to
a flat’s or stageset’s position. For exact placement, however, Editset should be
used after getting the flats roughly in position. All the transformation controls
(“scale”, “rotate”, “move”) operate relative the position where the stylus is first
pressed down. They all respond to horizontal motions only (even the “move”
“y”!), and these must be in the outlined section of the display (the nonmenu sec-
tion).

Since flat intersections are computed in software, turning the “intersections”
switch off will always speed up display. The intersections are quite useful for po-
sitioning of flats however.

The “manipulate stageset” section of Texas is used for changing the contents
of a stageset. The “camera” section is used for changing how a stageset is
viewed, but does not affect its contents at all. Changes effected in the “camera”
subtree alter the contents of the user’s .texastate. (This is clumsy and will be
changed in future versions.) Specifically, Texas provides four cameras which
may be independently moved about a stageset for different views, and a fifth
camera, called the “oracle” which looks at the currently selected camera looking
at the current stageset. The parameters describing these five cameras are stored
in .texastate and are used by Tweenset, Tweenex, and Cpcam. The viewing frus-
tum of the current camera is displayed when the “oracle” switch is on. The oracle
is useful for setting near and far clipping planes. The most effective use of the in-
tensity depth cueing of the PSII requires that the near and far clipping planes be
as tightly placed around the stageset as possible without (undesirable) clipping.

A useful button for getting started at the “camera” level is the “initialize”
button. This causes reseting of the current camera’s parameters to a canonical set
of values.

WARNING! At several levels in Texas the current camera’s view can be al-
tered in azimuth and elevation by moving, respectively, horizontally and verti-
cally with the stylus in pressure in the outlined section of the display. These
moves are also recorded in .texastate.

The “animate stageset” button at the main menu level enters a crude anima-
tion level permitting animation between two current camera views. This is not
yet a fully developed section of the program. It is intended for animation be-
tween camera views only. For animation of the stageset itself, or of flats within a
stageset, Arbor or Boop should be used. (See Flip and Unflip below.) The buttons
for “eases” are not yet implemented. Use instead the Shell level –e[oi] options.

Texas 4

Tweenset
This program is similar to the “animate stageset” button in the main menu of

Texas, which may be thought of as a preview button for Tweenset. Tweenset
generates the files needed by Tender for rendering. If Tweenset is to be executed
on the [DEC PDP] 11/70, your .texastate should be copied over from the 11/45
when you bring your stageset over. It should be installed in the directory of the
same name on both machines. Tweenset uses the camera parameters stored in
.texastate.

Here is a usage summary:
tweenset [stageset name i j n] [opts]

i, j = camera numbers (0-4)
n = number of frames
inbetweens of stageset are placed in name.0, name.1, …, name.(n-1)

and [opts] are:
-c clear fb (or Tek4014) between each frame
-d [t] draw each frame (t implies in the 4014) (NB, no clipping done

when drawing to 4014)
-e puts eases on both ends of motion
-ei ease in only
-eo ease out only
-f m generate frame number m only
-r x y z rotate stageset x (degrees) about x axis, y about y, z about z
-s x y z scale the stageset
-t x y z translate the stageset

Each file generated by Tweenset is a stageset with a set of camera parameters
appended. Prset can be used to print the stageset contents of these files and Edit-
set to modify the stageset section.

The –r, -s, -t arguments are applied in that order, and are hence not very
powerful. Once again, for other than simple motions, a 3-dimensional animation
program should be used.

Tender
This is the rendering program for Texas. It renders a stageset with a camera

description appended, as generated by Tweenset. So each frame of an animation
of a stageset requires another invocation of Tender. As currently conceived, the
program will use anywhere from 0 to 10 framebuffers. The most complex version
so far, however, uses only 3 for target, 1 for source, 2 for z-buffer, and 1 for tag
buffer, for a total of 7 framebuffers. Local transparency will require another 1 for
source, and correct pixel preimage computation will require yet another 2 frame-
buffers for source.

Here is a usage summary:
tender [filename] [opts]

filename contains a count, a list of flats, and a set of camera parameters

[opts] are:

Texas 5

- print usage message
-a do antialiasing
-A generate alpha, or matte, buffer (antialiased if -a given)

(forces -t flag but all objects are tagged at 255)
-b backname render backname texture on backfacing flats
-B debug flag
-c clear target buffers(s) to 0
-d[t] causes outlines to be drawn (t implies Tex4014)
-D[t] draw outlines only (forces -d[t] flag)
-f flatnum render given flat only
-h hither yon set hither and yon (default = -1., 1.) (forces -z flag)
-H f set hither and yon to min and max z (forces -z flag)

(max darkness occurs at f times total darkness (f = 1.
typically, 0 � f � 1))

-i initializes z-buffer (if present) and tag buffer (if present)
-m source includes a matte buffer
-M choose average of xinc and yinc as d coordinate (max is

default) [xinc, yinc, d are mipmap parameters]
-n do not use pictures specified in stageset
-p use pixel preimages, not mipmap approximations
-P point sampling (no mip, no antialiasing, no preimage

computation)
-s use priority sort instead of z-buffer
-t turn on object tag buffer
-T tag set initial tag to given number (forces -t flag)
-v verbose flag
-Y luminance only (do not use with -P)
-z turns on depth darkening
-Z turn on z-buffer calculations

target uses first 1-3 FBs, source the next 1-4, z the next 2, t the next 1.
The priority sort used with the –s flag is simply: Render all backfacing flats

first then all frontfacing flats. It is not difficult to create stagesets for which this
ordering fails. Future versions of Tender will have more sophisticated ordering
algorithms employed.

The texture, or picture, attached to each flat in a stageset may be set with the
“assign texture” button in Texas (“manipulate stageset” level) or with Editset.
The textures thus fixed to a stageset may be ignored, however, by use of the –n
option of Tender.

There is a flag associated with each flat in a stageset called the “active flag”.
Usually this flag is TRUE, but if it is FALSE the corresponding flat is ignored by
Tender. Editset can be used to change this flag.

Antialiasing of the edges of a flat may be accomplished with the –a flag if
priority ordering is used. If z-buffering is used for hidden surface calculations,
then approximate antialiasing may be effected by using the –t option to generate
a tag buffer. Then a pass with Dekink (by Lance Williams) smooths the edges.

Texas 6

A note on mipmaps is appropriate here. In general, a pixel to be rendered in
the target picture has a preimage in the source picture which partially covers a
set of pixels in the source. The complete correct computation of the average color
of this preimage is quite expensive. In his PhD dissertation work, Ed Catmull
came up with the scheme of preaveraging the source picture to cut down this
computation time. In this scheme, if you know that each of your target pixels has
a preimage of roughly m×n source pixels, you generate an averaged version of
the source picture with is 1

m
× 1

n
 the size of the original. Typically, a set of such

preaveraged sources is needed for good rendering.
Lance Williams invented the elegant format embodying this notion known as

the “mipmap” of the source. In this format, three-fourths of one framebuffer
holds the red, green, and blue components (one fourth each) of the source aver-
aged down by a factor of 2. Three-fourths of the remaining one quarter of the
framebuffer holds the red, green, and blue components of the source averaged
down by a factor of 4. And so fourth(!) Incidentally, “mip” stands for “multum in
parvo”, or “many things in a small place”. So not only does the mipmap cut
down on computation time if the same texture is to be used as a source many
times, but it also cuts down on framebuffer requirements. A full-color (24-bit,
RGB) source picture fits in one framebuffer. Tender assumes mipmap format (ex-
cept for the –P option) and uses the assembly coded routines written for mipmap
access by Dick Lundin.

The mipmap format has two drawbacks: Its approximation to a pixel pre-
image is highly inaccurate if the correct preimage is elongated. The highest reso-
lution available is half that of the true source. For these reasons, a future version
of Tender will compute exact pixel preimages, despite the cost in space and time,
if the user so desires.
Prset

Usage of this program is given by:
prset stageset [all]
where presence of the all argument (eg, the letter ‘a’ will do) causes inactive
flats to be printed also. See file /usr/alvy/header/flatdefs for the structure of a
flat.
Editset

Usage of this utility program is:
editset stageset [all]
where the all flag permits editing of the inactive flats also. Thus inactive flats
can be made active. Editset is a one-pass editor—ie, you cannot back up a line.
However, you may exit with a control-C at any time and have the stageset up-
dated as indicated up to the time of exit. This is true even if the end of file has not
been reached.

Vertexstate
The user’s .texastate (/usr/[username]/.texastate) is printed on his terminal.

See files tstatedef and kamdefs in directory /usr/alvy/header for details of the

Texas 7

.texastate structure. The principal motivation for this file is continuity between
successive uses of Texas.
Edtexstate

The operation of this editor is similar to Editset above but for the user’s
.texastate instead of a stageset.
Cpcam

Usage:
cpcam i j
copies the parameters stored for camera i in the user’s .texastate to the parame-
ters stored there for camera j.

Flip
This program converts a stageset to the format required by Arbor or Boop for

3-dimensional animation with spline interpolated parameters. It is used as fol-
lows:
flip [stageset name] [-]

It outputs one file named stageset.a and also one file for each flat named
name0.v, name1.v, … . Thus a stageset is interpreted as a root node with m leaves
if there are m flats. Fancier interpretations are possible, of course, but Flip will
not generate them. For example, a stageset might be thought of as comprising
two substagesets (subsets). This implies a 3-level tree for Arbor.
Unflip

Arbor (or Boop) can be used to generate from one (Flip’d) stageset many
frames of animation. The inbetweens generated by Arbor are called “frames”.
Unflip converts frames back into stagesets suitable for rendering by Tender. It is
called as follows:
unflip [-] arbordir framename stagename stageproto camnum
where

arbordir = Arbor directory where *.v files are located
framename = an Arbor frame filename
stagename = the equivalent stageset filename
stageproto = prototype stageset (ie, with texture names)
camnum = camera (0-4) transform to be appended to each stageset
Arbor uses the PSII for animating a stageset. As of this writing, Arbor does

not give you what you see on the PSII. Thus the last argument is required to
cause the stagesets generated by Unflip’ing frames to fill the framebuffer view-
port as desired. The desired camera view should be set up before passing a
stageset to Arbor.

Tweenex
This program is similar to Tweenset above:

tweenex [stageset name i j n] [-e] [-t]

where,

Texas 8

i, j = camera numbers (0-4)
n = number of frames
-e = put eases on both ends of all motions
-t = draw each frame on a Tek4014
It generates a sequence of files with names name.0, name.1, … which are in

the format required by Ed Catmull’s polygon rendering routine Render. The files
must be passed through Ed’s program Ysort before being sent to Render.

Addendum 1—8/21/79
The Texas rendering program Tender has been updated from that described

in the preceding document by the addition of local transparency. This and sev-
eral other additions will be described briefly here.

Local transparency is implemented via another source framebuffer, the alpha
buffer. Thus, if the –m flag is specified, the source picture is assumed to consist of
two mipmaps. The first is as before. The second is a mipmap of the alpha, or
matte, buffer describing the transparencies of the pixels in the first mipmap. In
this version, it is up to the user to fetch the desired alpha mipmap into the alpha
buffer.

The priority ordering algorithm has been improved slightly to omit com-
pletely obscured flats if the –s option is specified. Since this may give undesired
results for the case of local transparency (-m flag), it is not done in this case
unless the new –C flag is specified. The –C flag forces the covering step of the
priority algorithm which is normally turned off if –m is given.

Just the alpha matte for the target picture is generated if –j is given. No tar-
get picture is generated.

The clear option –c has been changed to require a numerical argument (-c
pv). This allows initial clearing of the target framebuffers to pvalue pv.

Some general words about the Texas system: It is intended for a small num-
ber of complexly rendered flats. It should handle 50 flats but will be tediously
slow for such a large number unless they are quite small, do not need z-buffering
or tag buffering, and need only a few different textures. Although local transpar-
ency and antialiasing are implemented for the case of z- and tag buffering, they
are not theoretically valid in this context and should be used with this fully in
mind.

Summary
Texas consists of the following programs:

Texas
Picture System II (PSII) program for creating a stageset

Tender
(texas render) renders a stageset into a framebuffer

Prset
prints out stageset to a terminal

Editset
allows editing of a stageset

Tweenset
generates inbetweens between two views of a stageset

Texas 9

Vertexstate
verifies (prints out) the user’s .texastate file

Edtexstate
allows editing of .texastate

Cpcam
(copy camera) a commonly used .texastate edit

Flip
converts a stageset to format required by Arbor (or Boop)

Unflip
converts an Arbor file to stageset format

Tweenex
converts stagesets into the format expected by Ed Catmull’s polygon
rendering program Render and does inbetweening (cf, Tweenset for Ten-
der)

