
IInnccrreemmeennttaall RReennddeerriinngg ooff TTeexxttuurreess iinn PPeerrssppeeccttiivvee
Alvy Ray Smith

Jet Propulsion Laboratory
California Institute of Technology

Pasadena, CA 91103

28 October 1979

Published as Tutorial Notes at SIGGRAPH ’80, Seattle, WA. This document was reentered by
Alvy Ray Smith in Microsoft Word on Apr 6, 1999. Spelling and punctuation are generally pre-
served, but trivially minor spelling errors are corrected. Greek letters and subscripts, unavailable
in the original, are used here for readability. Otherwise additions or changes made to the original
are noted inside square brackets or in footnotes.

Abstract
An incremental, scanline-ordered algorithm for rendering a 2-dimensional

texture into a planar convex polygon embedded in 3-space is presented. The tex-
tured polygon is projected into a viewing plane where it is seen in perspective.
The method is shown to cost a divide and two lerps per pixel more than the well-
known incremental algorithm for rendering an orthographic view of a texture or
a perspective view of a “texture” consisting of a single color (lerp = linear inter-
polation). It is argued that the divide is necessary—that, for example, second-
order incrementing is not good enough in general.

KEY WORDS AND PHRASES: incremental algorithm, texture mapping, perspective

CR CATEGORY: 8.2

Introduction
Rendering into two dimensions a picture which has been moved about in

three and viewed in perspective is an interesting function to all image makers.
For computer graphicists, this is not a conceptually difficult problem. It has been
solved for years with pictures consisting of lines only [NS], in which case it can
be accomplished in real time with off-the-shelf machines (e.g., the Evans & Suth-
erland Picture System II). Unfortunately, such machines do not yet exist for the
more interesting class of full-color, texturally rich pictures. There are fast ma-
chines for transforming color pictures, but they are either one-of-a-kind and very
expensive if they are powerful (e.g., space shuttle simulator at NASA Houston)
or they are cheap but restricted in capability (e.g., the SqueeZoom type video
machines). The purpose of this paper is to present as speedy an algorithm as is
known for rendering the general class of color-textured polygons in perspective
views on a general-purpose graphics machine (e.g., a cpu-framebuffer combina-
tion).

Incremental Rendering of Textures in Perspective 2

Definitions
A planar convex polygon is called a polygon here since no other type will be

treated. The set of points on a polygon and interior to it form its surface. A map-
ping of the surface of a polygon into a set of colors is a texture mapping, or simply
a texture, for the polygon. A polygon and a texture for it form a flat, from the
painted surfaces used for sets in staged theatrical presentations.

A given flat—its polygon actually—is assumed to have passed through the
following typical computer graphics processes:

(1) In homogeneous coordinate form, it has been moved about in eye space under
any number of affine transformations—e.g., rotation, translation, scaling.

(2) A perspective transformation appropriate to the desired viewpoint has been
applied. The flat is now in perspective space.

(3) It is clipped, if necessary, to the viewing solid.
(4) The homogeneous coordinate is divided through.
(5) A viewport mapping is applied to finish projecting the transformed polygon

into 2-dimensional screen space.
So far only the polygon has been transformed to the screen. The finished

rendering requires that its texture also be transformed. If step (2) above were
omitted, resulting in an orthographic projection, the following, again well-
known, algorithm could be used for rendering. It is an incremental, scanline-
ordered algorithm. It will also work for perspective projections of textured poly-
gons where the (degenerate) texture is a solid color. Incorrectly rendered solid
color looks just like correctly rendered solid color (so long as lighting is ignored).

(1) Obtain the inverse transform which takes the polygon back to its original
orientation as the source flat.

(2) Apply this inverse transform to all vertices of the polygon to get their inverse
images.

(3) By linear interpolation (lerping) between inverse images of adjacent vertices,
determine the inverse images of the intersections of each scanline with the
polygon.

(4) Again by lerping across a scanline between the inverse images computed in
step (3), compute the inverse images of each pixel.

(5) Determine the color texture mapped to each pixel’s inverse image and write
it to the screen. This is a nontrivial step worth a paper in itself. Here we shall
simply assume a routine exists for obtaining the texture mapped to the in-
verse image of a pixel.

The lerps in steps (3) and (4) may be computed incrementally. In step (3) Y
changes by 1 for each scanline. Hence the increments of change between scan-
lines can be computed. Then once the inverse image of an intersection of the
polygon with a scanline is known, that on an adjacent scanline is obtained by
addition of the increments. In step (4) the increments of change correspond to
stepping along a scanline pixel by pixel. Thus the incremental orthographic algo-
rithm costs only two adds per target pixel.

Incremental Rendering of Textures in Perspective 3

Perspective
Unfortunately, perspective transformations invalidate the lerps in the algo-

rithm above. See figure below.

Thus, equal increments in eye space do not map into equal increments in screen
space. Below we derive a relationship between equal intervals in screen space
and their nonequal inverse images in eye space. This will lead us to an incre-
mental algorithm for rendering in perspective. The difference from the ortho-
graphic rendering above is that two sets of increments of change are determined
for the counterparts of steps (3) and (4). Then by simple additions the numerator
and denominator of a particular fraction are determined at each pixel. So the in-
cremental perspective algorithm we derive is at least an add and a divide more
expensive per pixel than the incremental orthographic algorithm. See the Ap-
pendix for an argument that the divide is necessary.

Details
The perspective transformation we shall assume here maps eye space points

(, ,)X Y Ze e e into screen space points (, ,)X Y Zs s s as follows:

X
X
Zs

e

e

=

Y
Y
Zs

e

e

=

Z
f
Z

es
e

= +

where

e
Z Z

Z Z
f n

f n

=
+
−

f
Z Z

Z Z
n f

f n

=
−

−
2

for Zn = near plane Z and Z f = far plane Z, both in eye space.
Although there are several transforms that could be used, this one, derived

by Ed Catmull and Jim Clark, has the nice property that X, Y, and Z (screen
space) each map onto range [+1, -1]. Hence a perspective-space clipper can be
written which is symmetric in all three coordinates.

perspective
transform

Incremental Rendering of Textures in Perspective 4

We wish to determine the relationship between an interval in eye space and
its image in screen space. Consider a point (, ,)X Y Ze e e between line segment
endpoints (, ,)X Y Ze e ea a a

 and (, ,)X Y Ze e eb b b
. Let the images in screen space of these

three points be (, ,)X Y Zs s s , (, ,)X Y Zs s sa a a
, and (, ,)X Y Zs s sb b b

, respectively. Then we
may say

Z Z Z Ze e e ea b a
= + −α ()

Z Z Z Zs s s sa b a
= + −β ()

where α and β are weights on domain [0, 1]. That is, Ze is a lerp of Zea
 to Zeb

 by a
factor α, and Zs is a lerp of Zsa

 to Zsb
 by a factor β . By combining the two sets of

equations above, it can be shown [...1] that

(A) α β
β

β
()

()
=

+ −
Z

Z Z Z
e

e e e

a

b a b

This same relationship was also derived in [NS] in a different context (hid-
den line removal) and using a slightly different perspective transform. The im-
plication is, of course, that the formula for α above is independent of the actual
perspective transform used.

This formula is the key to our incremental algorithm. We now derive the in-
cremental parameters. Since we will always increment β in equal steps ∆β [...2],
α as a function of β for one increment is given [...3] by

α β β
β β

β β
()

()

()()
+ =

+
+ + −

∆
∆

∆
Z

Z Z Z
e

e e e

a

b a b

or

α β β()+ = +
+

∆ ∆
∆

n n
d d

where,
 n Zea

= =β numerator of α β()
 d Z Z Ze e eb a b

= + − =β() denominator of α β()
 ∆ ∆n Zea

= =β numerator increment
 ∆ ∆d Z Ze ea b

= − =β () denominator increment.

Let n Zea0 0= β , d Z Ze ea b0 0= −β () be the initial incremental parameters for the
first β , β 0 , which is in general not zero. So the Z coordinates at the endpoints of a
line segment along which we wish to interpolate are used to determine n0 , d0 ,
∆n , ∆d . With this information, we can compute the α for the ith increment4 of β :

α β()i
n i n
d i d

∆ ∆
∆

= +
+

0

0

 So the basic routine becomes, for each scanline Ys with X s varying in equal
increments from X sa

 to X sb
:

1 The phrase “(using a for alpha and b for beta)” in the original is omitted here because of the
availability of Greek letters.
2 The phrase “(read delta beta)” in the original is similarly omitted here.
3 The phrase “(continuing to use d for delta)” is similarly omitted.
4 The “nth increment” in the original is changed to the “ ith increment” to disambiguate n.

Incremental Rendering of Textures in Perspective 5

(1) Compute n0 , d0 , ∆n , ∆d .
(2) Set X Xs sa

= 5 and (,) (,)X Y X Ye e e ea a
= .

(3) Compute ∆X X Xe eb a
= − and ∆Y Y Ye eb a

= − .
(4) If X Xs sb

= then exit.
(5) Get the color at the inverse image of the current pixel (,)X Ys s —that is, at

(,)X Ye e .
(6) n n n= + ∆ ; d d d= + ∆ ; α = n

d
; X X Xe ea

= + α∆ ; Y Y Ye ea
= + α∆ .

(7) goto (4)6.
This algorithm costs two adds, one divide, and two lerps (for X and Y) per

target pixel, where a lerp costs an add and a multiply. A nonincremental imple-
mentation of formula (A) costs two adds, two divides, and four lerps per target
pixel.

Experience
This algorithm is a key element of the texture applying system TEXAS pro-

grammed by the author at NYIT (New York Institute of Technology) in 1978-79
[S1]. It is also an element of the scanline transformations designed by the author
and Ed Catmull at JPL (Jet Propulsion Laboratory) in 1979 and reported else-
where in this proceedings [CS].

Figure 2

5 The left side of this assignment was X in the original.
6 Implicit here is that Xs is incremented by 1 at each iteration.

Incremental Rendering of Textures in Perspective 6

The object pictured in Fig. 2 was generated, using TEXAS, by mapping five
paintings by Ed Emshwiller and one digitized NTSC video frame onto the faces
of an exploded cube slowly rotating through space. The paintings were painted
using the NYIT framebuffer paint program [S2]. The resulting picture is one
frame from the video piece Sunstone by Ed Emshwiller (NYIT, 1979).

Acknowledgements
To Ed Catmull and Jim Clark for help and support in three dimensions, to

Alexander Schure for the rich environment of the NYIT Computer Graphics Lab,
and to Bob Holzman and Jim Blinn of JPL for continuing my support.

References
[1] Ed Catmull and Alvy Ray Smith, 3D Texture Mapping with Simple 2D Trans-

formations, submitted to SIGGRAPH ‘80, Oct 1979. [Published as 3-D Trans-
formations of Images in Scanline Order, SIGGRAPH ’80 Conference Proceed-
ings, Jul 14-18, 1980, Seattle, WA, edited by James J Thomas, 279-285.]

[2] William Newman and Robert Sproull, Principles of Interactive Graphics,
McGraw-Hill Book Company, 2nd Edition, 1979, 362.

[3] Alvy Ray Smith, Texas (Preliminary Report)7, NYIT Technical Memo No. 10,
Jul 1979. Also issued as tutorial notes at SIGGRAPH ‘79 (with an Addendum
dated Aug 1979).

[4] Alvy Ray Smith, Paint8, NYIT Technical Memo No 7, Jul 1978 (also in SIG-
GRAPH ’78 and SIGGRAPH ’79 Tutorial Notes, Aug 1978 and 1979 [and at
SIGGRAPHs ‘80-’82 too]). [Published in: Tutorial: Computer Graphics, ed-
ited by John C Beatty and Kellogg S Booth, IEEE Computer Society Press,
Silver Spring, MD, 2nd Edition, 1982, 501-515.]

Appendix
We shall continue to use the [notation introduced above]9 in the following

Taylor series expansion of the critical formula (A) expanded about β = 0 :

α β β β() ()= −
F
HG

I
KJ=

∞

∑
Z

Z

Z

Z
e

e

e

e

i

i

a

b

a

b

1
0

[...10]. Since ()Z Ze ea b
 can be anything, we cannot ignore higher order terms. This

dashes any hope that there might exist higher-order difference equations for ac-
curately approximating α β() . This is true so long as no limits (other than the
usual computer finiteness) are placed on the Z coordinates of the polygon being
transformed.

7 Called TEXAS in original paper.
8 Called PAINT in original paper.
9 Replaces “abbreviation a for alpha and b for beta” in the original, required because of lack of
Greek characters there.
10 The phrase “where SUM[] is the summation operator over the nonnegative integers n, and ** is
the exponentiation operator” in the original is omitted here because of the availability of the
summation and exponentiation operators. Also, i is used rather than n in the formula to avoid
ambiguity. There is a missing right parenthesis in the original, just before the exponentiation op-
erator.

