
Microsoft v8.9

VVaarriieettiieess ooff DDiiggiittaall PPaaiinnttiinngg
Technical Memo 8

Alvy Ray Smith
August 30, 1995

Abstract
The purpose of this memo is to distinguish between the various meanings

that digital painting may have. It is important to have a taxonomy so that intelli-
gent conversation may proceed on such important issues as multi-resolution
paint programs. Each type of painting will be discussed in its multi-resolution
generalization. The taxonomy here splits painting into discrete and continuous
categories and each of these into maxing and non-maxing subcategories.

Discrete v Continuous Painting
As usual in computer graphics, there are discrete and continuous versions of

so-called painting, a digital technique originally intended to simulate the act of
painting on canvas with a brush dipped in paint. The simplest version of paint-
ing, a discrete version, is nothing more than repeated compositing of an image
called the brush, or paintbrush, with another image, often called the background
image. The compositing (see [PorterDuff84]) repeats at every point taken from
some input device such as a tablet stylus or mouse. If the brush is a single color
and if the sampling of the input device is done often enough, then a stroke of
paint appears to have been laid down over the background. The brush can have
arbitrary shape and transparency. There are an infinity of variations of this type
of painting obtained by performing an arbitrary image computation at all back-
ground pixels under the pixels of the brush in its current location. This kind of
paint is the earliest realized (see [Smith78] for example) and is still used. For ex-
ample, my 1993 product, Altamira Composer used this class of painting tools for
its so-called “touchup” tools: paint, smear, erase, and clone, for example. It is the
fortuitous overlapping of sequential brush copies that constitutes a “stroke” in
this kind of painting. Absolutely any image can be used as a brush. Since this
type of painting is defined at discrete points, using a discrete image, we shall call
it discrete painting.

A very different class of painting is defined continuously. A geometrically
defined stroke is used that is constrained by the hand of the artist only at selected
points, called control points, and is rendered between these points from the model
of the stroke—a cylinder with a spline backbone, for example. The model of a
stroke can have transparency too. The rendered model is composited over the
background image as in discrete painting. The difference is that a stroke is ren-
dered all at once, or as a sequence of substrokes. As opposed to the discrete
painting that paints only at tablet (or other input device) points, this type paints

Varieties of Digital Painting

Microsoft Tech Memo 8 Alvy

2

between them—in a connect-the-dots mode—as well. This type of painting shall
be called continuous painting. As in discrete painting, an infinity of variations is
possible by using the stroke—as opposed to the brush copies—to limit those pix-
els of the background image to which an arbitrary image computation is per-
formed.

There are pluses and minuses for both types of painting. I have already men-
tioned that arbitrary brushes may be used in the discrete case, but that a stroke is
not guaranteed to be continuous. If an artist paints too fast, the copies of the
paintbrush that make up the stroke can overlap only slightly, creating unsightly
scallops, or can break completely apart at great speed into a string of pearls
(without the string).

For the continuous case, a continuous stroke is guaranteed, by definition, but
for a slow machine, the rendering of the stroke can annoyingly follow the artist’s
hand, in a kind of catch up mode, or for even slower machines, degenerate into
unacceptably polygonal or faceted strokes due to insufficiently many interesting
control points.

In the early days, I would typically include both types in a “paint program”.
I used the terms painting and inking to distinguish the two forms. Painting was
discrete painting, because the machines were too slow to stay up with continu-
ous rendering. I called the inking, or continuous, mode in my first paint program
sketching ([Smith78]). One would use this tool to render a black line with antiali-
ased edges between selected points, so it looked vaguely like pencil sketching
(but it certainly didn’t feel like it). It was so slow at the time that a user typically
used point-by-point placement of control points rather than freehand strokes on
the tablet.

On modern machines, discrete brushes can be placed so frequently as to feel
like smooth stroking, without the need for any code in addition to ordinary com-
positing. Alternatively, they are so fast that rendering of continuous strokes can
often stay up with the artist’s hand. This is particularly true of continuous mod-
els such as local splines that can be rendered in independent pieces as the control
points flood into the processor. The problem with continuous strokes is what to
do at crossings, where the stroke intersects itself, and between independently
rendered segments, at the overlapping endpoints. These problems are particu-
larly visible for partially transparent strokes.

Multi-Resolution
If simple painting with a single color is the computation of interest, then

multi-resolution versions of both types can be built. By definition, continuous
painting is scalable and hence can be implemented at arbitrary resolution. Dis-
crete painting is more problematic, but it too can be defined for multiple resolu-
tions: The brush image is scaled up or down to the new resolution, using stan-
dard image resizing functionality1, and the spacing between tablet points is cor-

1 And translation resampling too, in general.

Varieties of Digital Painting

Microsoft Tech Memo 8 Alvy

3

respondingly scaled. Then the compositing proceeds as in the original resolution
case. Straightforward (simulation of) painting should look the same at all resolu-
tions, whether realized discretely or continuously. It is the generalizations or
variations on these simple schemes that are problematic.

Note that “multi-resolution” is not exactly the same as “scalable”. You can
think of multi-resolution as being the discrete version of scalable. A scalable fea-
ture can be applied at any resolution. A multi-resolution feature need only be
applied at each of a given discrete set of resolutions. To make discrete painting
scalable as well as multi-res (to coin a term to mean applicable to multiple resolu-
tions), would require arbitrary translations of the brushes as well.

Unfortunately, multi-res discrete does not work as neatly as it may seem it
should from this brief description. Let’s see why not. The basic problem is that an
artist’s intention does not scale. For example, often when I am painting at the
highest resolution, my intention is to actually put exactly this pixel value into
that pixel—I want to paint that single red pixel on the end of his nose tan, a dis-
crete operation. At lower resolution, this is a meaningless operation: In the lower
resolutions, that single miscreant pixel—from a bad scan, say—is not likely to be
visible even.

Another way to state the basic problem in the multi-res discrete case is that
many functions implemented under the rubric of painting are inherently resolu-
tion dependent. Recall that the general meaning of painting is any image compu-
tation under hand control—equivalently, under paintbrush control. So for an ex-
treme example, let’s invent “flicker paint”. On interlaced televisions, a flicker
phenomenon is introduced by coloring alternate scanlines in highly contrasting
colors—eg, odd lines are black and even ones white. A multi-res realization of
flicker paint would be effective (or intentional, again) only at full resolution. Any
lower resolution representation would be mush—gray in our example.

It is worth noting, however, that the problems of intention as represented by
the two examples above can be solved by requiring that a user paints at the high-
est resolution. So the paint program would require that a user work on an area to
be painted at the “truth” level of resolution. Alternatively, the user paints at the
displayed resolution and experiences odd results at higher resolutions. For ex-
ample, if he flicker paints at screen resolution so that every other screen scanline
is painted black or white, then at higher resolution he gets “fat” scanlines—eg at
four times screen res he would get four white lines alternating with four black
ones under the scaled (and possibly translated) brush.

It is also worth noting that most ordinary kinds of discrete painting should
work at multi-res. We discuss several examples below.

Varieties of Digital Painting

Microsoft Tech Memo 8 Alvy

4

Examples of Discrete Painting
The normal discrete varieties implemented in Altamira Composer are Paint

Over and Paint Atop2 for simple painting with a single color, Smear Over and
Smear Atop for smearing in the direction of brush motion, Erase for erasing holes
in a sprite (ie, in its alpha channel), Dodge/Burn for local darkening and bright-
ening, Step Contrast for local contrast changing, Xfer and Clone for relative and
absolute cloning3, Tint and Colorize for local colorization4. All of these should
scale in a multi-res realization by the technique outlined above: Scale the brush,
scale the location, apply the function to the new res sprite.

It is user feedback that is the critical issue. Any realization of painting must
be fast enough that the user is convinced he is painting on a sprite. It does not
matter how the implementation is done, so long as the illusion is not broken.
Smearing, for example, is often used to “mix paints” together in subtle ways, as
on a real artist’s palette. It is very important that the user immediately see the re-
sults of “schmudging” the paints together so as not to go “too far”. A realization
that uses intermediate buffers between the paint and the sprite that is apparently
being modified (it need not be) must preserve the illusion although rather nu-
merous copying and modifying operations of pixels between the sprite and
buffer (could be another sprite) may be occurring in the realization. Another
form of intermediate buffering, called maxing, is discussed in a following sec-
tion.

A non-standard type of discrete painting in Altamira Composer is Impres-
sion painting, named for a vague resemblance in effect to impressionistic paint-
ing. The algorithm here is this: Determine the color of the pixel under the center
of the brush, change the paint color on the brush to this color, and lay down
(composite over) one copy of the brush, then repeat for the next brush location.
This tends to “de-res” (lower the resolution) the image in a round, shower-door,
kind of way that can be quite interesting. This would give different results at
lower resolution than at full resolution—because the color of the center pixel, as-
suming that can always be well defined, is generally an average of several colors
in the true image. But again, the problem disappears if Impression painting is al-
lowed only at full resolution.

2 Over and atop refer to the matting algebra operators of [PorterDuff84]. Paint Atop a sprite, for
example, applies paint to the non-transparent pixels of the sprite only, Paint Over to all pixels in
the bounding box of the sprite.
3 Xfer and Clone are both pixel transfer operations under brush control. If the transfer is from an
absolute, fixed location, it is called cloning, or rubberstamping—a very dumb operation. Relative
transfers are from a source location that is relative the target location, indicated by the user, by a
fixed vector. This transfer an area of pixels from one place to another and is usually much more
useful than dumb cloning. Cloning unfortunately is often used to have both meanings, which
makes conversaton difficult.
4 Tint changes the hue of a picture but preserves its whites and blacks. Colorize changes the hue
of whites and blacks as well, as if a colored filter were placed over the image where the brush
passes.

Varieties of Digital Painting

Microsoft Tech Memo 8 Alvy

5

Another class of non-standard discrete painting types in Altamira Composer
are the Warp paints. Several of the Warp operations available in the program can
be applied under hand, or brush, control. For example, Vortex paint causes the
image under the brush to be deformed as if it were being twisted about its center
point. All of these functions are defined with continuous deformations, realized
with discrete resampling operations. They should all scale to multiple resolu-
tions. These are offered here to bolster the definition of painting to be any image
computation under hand control. The other Warp paints are Bulge, Escher, Mesa,
Radial Sweep, and Spoke Inversion.

Read-Modify-Write Painting
Smearing is a type of discrete painting that deserves further explication. It

will lead us to draw another distinction. The way smearing works in Altamira
Composer is this: The contents of the current sprite in the pixels under the brush
are copied into the brush, translated one pixel in the direction of motion (eight
directions honored), and lerped5 back into the current sprite. The lerp is
weighted by the current opacity. This is repeated again and again as the brush is
moved across the sprite. The effect is that portions of the image are moved, or
smeared, in the direction of motion, with transparency serving as viscosity (the
lower the opacity slider, the more viscous is the apparent smearing). So this type
of painting does a read-modify-write cycle at every brush position. Another way
to say this is that there is feedback between the sprite and the brush; the results
of the previous brush applications affect the current application. It is clear that
there are many variations possible using this paradigm. For example, the modifi-
cation could be a blur or sharpen rather than a shift.

A related implementation would maintain a copy of the source sprite, before
any smearing. Then the first step at each new position of the brush is to copy
pixels into the brush from the source sprite, not the sprite under modification.
Any painting function implemented in the (read modified image)-modify-write
form can also be implemented in (read original image)-modify-write form, but
the results will generally be different in the two cases. Let’s call the two cases
modified RMW and original RMW for short. The blur/sharpen example above in
fact does not give the intended result in the former case (modified RMW) but
does in the latter. In the former case, it tends to degenerate the image while in the
latter, it sharpens the image in the local areas defined by hand.

This distinction affects the multi-res generalization. In the modified RMW
case, the order of brush positions is always important so they have to be remem-
bered for the multi-res case. There can be thousands of these positions, which is
not unthinkable but does lead to management problems. In the original RMW
case, the order is often not important. It is important sometimes, however, For
example, the smearing algorithm described above implemented in original RMW
form gives a different result, in general, if the order of translation of brush con-

5 Lerp is short for linearly interpolated.

Varieties of Digital Painting

Microsoft Tech Memo 8 Alvy

6

tents is altered. But if the brush contents aren’t moved during the RMW cycle,
then the order of brush application is immaterial. For a multi-res implementation
in these cases then, the brush positions do not have to be remembered from one
resolution to another. Often just a representation of “dirty pixels” or some other
“scalar field” need be remembered for the multi-res application, and these can be
quite succinct.

Examples of Continuous Painting
There is an example of continuous painting in Altamira Composer too. This

is buried in the Spline/Polygon package. If the Open/Not Tapered or the
Closed/Not Filled options are selected then the splines (or polygons) are ren-
dered with shape. That is, the continuous stroke defined by the spline is ren-
dered with a constant width and antialiased edges and carefully rounded end-
points (in the Open case). This is not implemented as painting in Altamira Com-
poser, but it could be. Instead, the knot, or duck, points of the spline are ap-
pended one at a time and then the spline is rendered when the list of ducks is
complete. To make this a painting operation would require the rendering of the
spline as the ducks were being sampled from a continuous mouse movement.
This is possible because the Duff Splines used in Altamira Composer are of the
local variety (as opposed to global). This means that early parts of the spline are
not affected by later parts, so can be rendered as defined. The rendering algo-
rithm must ensure that there are no artifacts at the joints between successively
rendered segments of the spline. With these conditions in place it should be
straightforward to scale the spline stroking operation—ie, continuous painting.

For Open/Tapered splines, color, opacity, and width can vary continuously
along the spline stroke. However, this cannot be implemented until all the ducks
are known, so that the interpolation length can be determined. It is not clear how
this could be made comfortably interactive. We did implement it at Lucasfilm
with a virtual stroke with the mouse (tablet stylus actually), followed by the ren-
dering. One had to guess where the strokes would fall, but it lead to beautifully
graceful strokes.

Waxy Buildup
Simulation of airbrushing6 can be accomplished in both ways, discretely and

continuously. The simple way is by lerping a nicely shaped brush in a constant
color with a background image. The complex way is to simulate a stroke of air-
brush paint with a geometric, or continuous, model - complete in the most elabo-
rate cases with simulation of the tilt of the airbrush flow. In both methods, you
may want to do what we call "max paint" in Altamira Composer - that is, you
may want to have the paint build up to a maximum opacity but not exceed it.

6 For years I fought a losing battle to restrict the use of the term “airbrushing” to a true simulation
of the airbrush which builds up a surface with randomly sprayed particles of pigment. I have
now given up and use the common computer graphics meaning of a very soft-edged lerp of a
continuous, or apparently continuous, surface to an image.

Varieties of Digital Painting

Microsoft Tech Memo 8 Alvy

7

One way to accomplish this is to paint into an empty buffer where you can check
each pixel as it is about to be written to determine if it "is full" (to the preset opac-
ity) already. If it is, then no further modification is performed. Then when the
stroke is completely rendered, it is composited into the background. So this
could more generally be called “check paint” to directly imply all forms of check-
ing against “dirty” pixels. So this is related to the scalar field discussion above.

Summary of Painting Types
We have the following kinds of painting classes:

• Discrete, non-maxing. Each brush copy is repositioned to a position sampled
from the user input and is combined directly with the background independ-
ently of any other copy of the brush. Any imaging operation can be per-
formed under the brush here, not just compositing. This works well if there is
sufficient processor speed to sample user input very often. In some cases, air-
brushing for example, it can cause undesired buildup of opacity.

• Discrete, maxing. Each brush copy is repositioned to a position sampled from
the user input and is composited into a temporary image buffer before com-
positing with the background. This is so each pixel can be checked for "max-
ing", where it is understood that maxing is just one representative check that
can be made at this step. The buffer starts empty. This can be made to work
quite well but uses more memory. It avoids the "waxy buildup" problem. The
extra memory can be used for some nice editing (or undo) features and can
also be used in some cases to avoid remembering brush positions.

• Continuous, non-maxing. A stroke is modeled from a model of a brush. For
example, a gaussian brush model is convolved with a spline through user in-
put points. The model is rendered directly into the background image. This
works well for processes that can be continuously modeled. It can suffer from
the waxy buildup problem at joints between rendered segments or when
strokes cross over themselves. On systems with insufficient speed, there can
be a very annoying delay between a user's movement and the rendering of
the stroke. Bad implementations don't understand that strokes of length 0
should also be rendered (for spots).

• Continuous, maxing. A continuous model is rendered into a temporary
buffer so that the maxing check can be made.

As already mention, Altamira Composer has examples of the first three
types. Most so-called painting or touchup functions are of the two discrete types
depending on the desired function. The continuous, non-maxing type is hidden
in the spline rendering package which is missing only a freeform user input to
complete. The current implementation does not allow freeform input - the user
enters the control points, then says go. This would be simple to change but was
not the intent of Composer. And strictly speaking, maxing is partially imple-
mented: It is implemented along the spline at its joints but not at other self-
intersections (to save memory). This seems to be a decent compromise.

Varieties of Digital Painting

Microsoft Tech Memo 8 Alvy

8

Then, of course, there are mixtures of discrete and continuous. For example,
a spline could be defined and then discrete brushes laid down along it at discrete
intervals. Other variations are possible.

A Patent Distinction
Then there is another distinction that can be made—that enters in patent

suits: When rendering a continuous model, you can do it two ways in the case of
an unchanging brush shape moving along a geometric curve:

• Render copies of the brush along the curve.
• Compute a single continuous shape from the brush shape and the curve

shape and render this.

The first rendering type is what Quantel has patented (although they claim
everything and all ways)7. If you do the math, you can show that with appropri-
ate spacing of the brush copies, both methods generate the same result. A bunch
of gaussian spots rendered atop each other along a straight line, for example, is
the same as the rendering of a cylinder with gaussian cross section, that lies
along the line (with appropriate treatment of the endpoints).

Conclusions
The first observation is that the concept of “painting” in imaging is quite a bit

more complex than a simple mention of the term often implies. For example, the
comment that prompted this memo was roughly, “Painting should easily be real-
izable in a multi-resolution format, shouldn’t it?” It is not obvious, considering
all the different things “painting” means, that there is a simple Yes or No answer
to this question.

But now, after careful analysis of all the different types of painting, I believe
it is safe to say that all types considered here are capable of multi-resolution im-
plementation, though certainly not with a single scheme (cf, modified v original
read-modify-write painting types and order dependent v order independent
types) and being mindful that certain operations just don't make sense other than
at a single resolution (cf, flicker paint) and that others give different results at dif-
ferent resolutions (cf, Impression paint). A further caveat is that an insufficiently
fast realization is not good enough even though it might “work” programmati-
cally.

A large class of painting effects that is not analyzed here are the so-called
“painterly effects” that often attempt to simulate well-known “real” media af-
fects such as brush hairs, directional painting, chalk, etc (eg, see [Strassmann86]).
These would probably have to be analyzed on a case-by-case basis. I believe that
some of the concepts described here might be useful for such further analysis.

7 Many of us in the industry believe these patents should be struck down. They have not yet suc-
cessfully been so, however. [Note added 16 Dec 1998: They now have been struck down.]

Varieties of Digital Painting

Microsoft Tech Memo 8 Alvy

9

References
[PorterDuff84] Porter, Thomas, and Duff, Tom, Compositing Digital Images,

Computer Graphics, Vol 18, No 3, Jul 1984, 253-259. SIG-
GRAPH’84 Conference Proceedings. The classic digital compo-
siting paper.

[Smith78] Smith, Alvy Ray, Paint, Tech Memo 7, Computer Graphics Lab,
New York Institute of Technology, Old Westbury, NY, Jul 1978.
Issued as tutorial notes at SIGGRAPHs 78-82. Reprinted in Tuto-
rial: Computer Graphics, edited by John C Beatty and Kellogg S
Booth, IEEE Computer Society Press, Silver Spring, Maryland,
2nd edition, 1982, 501-515. Contains a brief history of paint. First
public mention of RGB paint, airbrushing, etc.

[Strassmann86] Strassmann, Steve, Hairy Brushes, Computer Graphics, Vol 20,
No 4, Aug 1986, 225-232. SIGGRAPH’86 Conference Proceed-
ings.

[Whitted83] Whitted, Turner, Anti-Aliased Line Drawing Using Brush Extru-
sion, Computer Graphics, Vol 17, No 3, Jul 1983, 151-156. SIG-
GRAPH’83 Conference Proceedings.

