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Introduction 
Eigenvectors and eigenvalues play powerful roles in linear algebra. A re-

markable example of their use in geometry is presented here: Any n-gon can be 
represented as a complex linear sum of n eigenvectors. Since these eigenvectors 
are themselves n-gons, I call them eigenpolygons1. For example, any hexagon can 
be represented by a linear sum of six eigenhexagons, or, as the title suggests, it 
can be decomposed into six eigenhexagons. And any hexagon can be decom-
posed into a sum of the same six eigenhexagons—hence the “eigen”. The right-
most column of Figure 1 shows these characteristic, or fundamental, hexagons. 
The columns of this figure, in fact, are the eigenpolygons for triangles, quadrilat-
erals, pentagons, and hexagons, respectively. Details of the eigenpolygon de-
composition of 2-dimensional polygons are presented below. 

I became acquainted with this technique in [1] while searching for proof 
techniques to apply in my paper [2]. I commented on its beauty and efficacy to 
author Professor Tom Sederberg who informed me that an editor of his book 
might have contributed it! I found it very useful in completing [2]. Upon quiz-
zing my computer graphics research colleagues, I discovered they were as un-
aware of the result as I. Hence this paper.  

Eigenpolygons 
As shown in [1, 2], there are interesting polygon operators that take n-gons to 

n-gons and which are linear. A famous one is the “Napoleon” operator that takes 
an arbitrary triangle to an equilateral triangle. Construct an equilateral triangle 
outward on each of the three sides of the given triangle. Connect the three cen-
troids of these equilaterals. Napoleon’s Theorem guarantees that the new triangle 
so formed is always equilateral. ([2] is a generalization of this to infinite se-
quences of hexagons and equilaterals on an arbitrary triangle.) 

We shall take an n-gon to be embedded in the complex plane. Hence an n-
gon is an n-tuple of points in the complex plane, in traversal order. So a linear 
operator on polygons is just an ordinary linear operator on points in the complex 
plane. A linear operator on a triangle, for example, is a 3x3 matrix of complex 
constants applied to a 3-element vector representing the polygon. In general, p’ = 
Mp represents the operator M working on polygon p to form new polygon p’, 

                                                 
1 Tony de Rose and Ed Catmull of Pixar have proposed the term “basis polygons” instead as 
more intuitive and less bizarre. 



Eigenpolygon Decomposition of Polygons   

Microsoft Tech Memo 19  Alvy 

2

where M is an nxn matrix and p and p’ are n-element vectors. I use column vec-
tors in this presentation. 

If there is a scalar s such that linear operator M applied to a vector v is Mv = 
sv, then s is called an eigenvalue of operator M. Any nonzero2 vector e such that 
Me = se is an eigenvector for eigenvalue s (for operator M). For instance, if s is 
real, then M simply scales e along itself. For another, if s is a pure rotation eiθ , 
then M simply rotates e by angle θ . In either case, M can be an elaborate opera-
tor, but it simplifies along its eigenvectors. Examples of elaborate operators M 
are presented below. 

If an arbitrary polygon (vector) p can be written as a sum of eigenvectors, 
p e= ∑ak

k( ) , with the ak  complex scalars, then the general case simplifies too, to 

′ = = ∑p Mp eak k
kλ ( ) , where eigenvalue λ k  corresponds to eigenvector e ( )k . We 

are interested here in operators M for which the e ( )k  are the eigenpolygons 
shown in Figure 1 (and their generalization to arbitrary n). The eigenvalues for 
these particular eigenvectors are discussed next. 

Let ω  be the complex operator that rotates a complex point by angle 2π
n  

counterclockwise about the origin—ie, ω π= e2 i n . The powers of ω  are therefore 
the nth roots of unity. These are exactly the eigenvalues we are interested in, and 
the corresponding eigenvectors, the eigenpolygons, are the vectors 
e ( ) ( )[ ]k k k n k= −1 2 1ω ω ωL . For example, the leftmost column in Figure 1 
contains the three eigentriangles e ( ) [ ]1 21= ω ω , e ( ) [ ]2 2 41= ω ω  
= [ ]1 2ω ω , and e ( ) [ ]3 3 61= =ω ω  [ ]1 1 1 , a degenerate triangle. In general, 
there are n eigenpolygons and n eigenvalues for n-gons. 

Figure 2 shows a given hexagon h, where, as usual, the unmarked point is 
the origin. It also shows the 6-tuple a whose elements are the coefficients in the 
eigenpolygon decomposition of h. The six eigenhexagons are repeated from Fig-
ure 1 for visual convenience. Notice that the triangles are really hexagons be-
cause they are traversed twice. Similarly the line segment is a hexagon because it 
is traversed roundtrip three times, and the point is a degenerate hexagon. So 

h e aE= =
=

∑ak
k

k

( )

1

6

, where matrix E which has e ( )k  as it kth row, or hk
k= ⋅a E( ) , 

where E ( )k  is the kth column of E. In words, each vertex of h is the dot product of 
a (itself a hexagon) and the vector formed from the corresponding vertices of the 
eigenhexagons. For example, h2  is the dot product of a and the vector of vertices 
labeled 2 in the list of eigenhexagons of Figure 2. And h3  is the dot product of the 
same a but with the vector of vertices labeled 3. But perhaps the simplest inter-

pretation is taken directly from h e=
=

∑ak
k

k

( )

1

6

—a linear sum of the eigenpolygons. 

                                                 
2 The zero vector 0 is always an “eigenvector” of “eigenvalue” 0 for any operator M—ie, M0 = 
00—so it is defined away. 
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This is the precise meaning of the concept, in the Introduction and title, of a de-
composition of an n-gon into eigenpolygons. 

How to Compute an Eigenpolygon Decomposition 
This is simple. Since p aE= , then a pE= −1 , assuming the inverse exists. For 

convenience, E and E−1  are stated for the four cases of Figure 1: 
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Do you see the pattern? In the case n = 3, consider the 2x2 submatrix obtained by 
deleting the row and column of all 1s. This submatrix of E−1  is the left-to-right 
(or top-to-bottom) reflection of the submatrix of E. This holds for all n. Another 
way to say this is: The columns of nE−1  are (a permutation of) the rows of E—ie, 
the eigenpolygons. 

Figure 2 shows each of the eigenhexagons weighted by the appropriate ak  
for the decomposition of the given hexagon h = − + − − −1 2 2 3 2 2 1i i i i . It 
also shows the partial sums as the weighted eigenhexagons are added together. 
The principal insight gained from this figure is that the contribution of the de-
generate eigenhexagon e ( )6  is to offset the centroid of the given polygon from the 
origin. In other words, a6 0=  for hexagons centered on the origin, and similarly 
for all n-gons. 

Operators with Eigenpolygons as Eigenvectors 
Although the purpose of this memo is to present the eigenpolygon decom-

position of polygons, it might be of additional interest to know just which linear 
operators M benefit from this decomposition—ie, which M have the eigenpoly-
gons as eigenvectors and hence offer the computational simplification ′ =p  
Mp e= ∑ak k

kλ ( )  discussed above. 
Consider the shift (backwards) operator S defined for n-gon p by ′ =p Sp  de-

fined by ′ = +p pk k 1 , where the indices wrap modulo n. For example, S yields 
′ =p p6 1  for hexagons. The complement S  is similarly defined by ′ = −p pk k 1 . It is 
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not difficult to show that ω k , the nth roots of unity, are the eigenvalues of S with 
eigenvectors e ( )k . Take quadrilaterals for instance: 

Se( )k =  S e1 12 3 2 3ω ω ω ω ω ω ωk k k k k k k k= = ( ) . 

Similarly, the conjugates ω k  are the eigenvalues of S  with the same eigenvec-
tors. 

Any operator that can be expressed as a polynomial in S and S  is one of the 
M that benefit from eigenpolygon decomposition. The Napoleon operator N that 
satisfies Napoleon’s Theorem is, not surprisingly, one of these. It can be ex-
pressed by N S I= + −c c( )1 , where I is the identity operator mapping an n-gon to 

itself and c e i= −1
3

63 π  (see [1]). In words, N constructs an isosceles triangle on 
each side of a given triangle with matching angles of π

6 , which is equivalent to 
constructing equilateral triangles on each side and connecting their centroids. 
Since S has eigenvalues ω k , for ω π= e i2 3 , and I has eigenvalue 1, the eigenvalues 
of N are λ ωk

kc c= + −1b g . For arbitrary triangle t and its eigentriangle decompo-

sition t e=
=

∑ak
k

k

( )

1

3

, the streamlined Napoleon calculation becomes ′ = =t Nt  

bk
ke ( )∑ , where b ak k k= λ . 

It is easy to describe, using the eigentriangle decomposition of triangles, why 
the Napoleon Theorem works: One of the equilateral eigentriangles is annihi-
lated by the operator leaving only the other which is, of course, regular and 
hence the (outer) Napoleon triangle. In particular, notice that λ 2 0= . 

The beautiful Douglas-Neumann Theorem generalizes the Napoleon Theo-
rem to arbitrary n-gons. Chang and Sederberg [1] give an excellent presentation 
of this theorem which states that a particular series of constructions of isosceles 
triangles on the sides of a given n-gon must reduce it to a regular n-gon. This can 
be expressed by a sequence of operators, each of which has the eigenpolygons as 
eigenvectors. Each operator in the sequence annihilates one of the eigenpolygons 
in the decomposition, ultimately leaving only one. 

Finally, in [2], I generalize Napoleon’s Theorem in another direction, show-
ing that an arbitrary triangle operated on by sequences of operators from a cer-
tain class always maps to an infinite sequence of hexagons (equilateral triangles 
in a special case) that are all concentric with one another and the given triangle 
and parallel to one another. As you might guess, each operator in the class has 
the eigenpolygons as eigenvectors, and I use eigen polygon decomposition to 
prove the main theorems. 
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Figure 1 

The n eigenpolygons for n-gons, n = 3, 4, 5, and 6 (in columns, left to right). 
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Figure 2 

Hexagon h and its decomposition a into eigenhexagons. C is its centroid. 
The eigenhexagons on the left are shown multiplied by the ak. The upper 

right shows the intermediate steps of the eigenhexagon addition that yields 
h. a6 is seen to be the offset of the centroid C from the origin. 

 


